Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

01-04-2016 | Review Article

Segmentation of the human spinal cord

Authors: Benjamin De Leener, Manuel Taso, Julien Cohen-Adad, Virginie Callot

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2016

Login to get access

Abstract

Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion in large suite and data sharing would also ultimately benefit to the community.
Appendix
Available only for authorised users
Footnotes
1
Label fusion is a method used for resolving pixel conflicts when deforming multiple atlases into a single target.
 
Literature
1.
go back to reference Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I (2014) The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84:1070–1081PubMedPubMedCentralCrossRef Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I (2014) The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84:1070–1081PubMedPubMedCentralCrossRef
2.
go back to reference Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84:1082–1093PubMedPubMedCentralCrossRef Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84:1082–1093PubMedPubMedCentralCrossRef
3.
go back to reference Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(3):701–708PubMedCrossRef Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, Tofts PS, McDonald WI, Miller DH, Thompson AJ (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(3):701–708PubMedCrossRef
4.
go back to reference Despotovic I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341PubMedPubMedCentralCrossRef Despotovic I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341PubMedPubMedCentralCrossRef
5.
go back to reference Fujimoto K, Polimeni JR, van der Kouwe AJ, Reuter M, Kober T, Benner T, Fischl B, Wald LL (2014) Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage 90:60–73PubMedPubMedCentralCrossRef Fujimoto K, Polimeni JR, van der Kouwe AJ, Reuter M, Kober T, Benner T, Fischl B, Wald LL (2014) Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage 90:60–73PubMedPubMedCentralCrossRef
6.
go back to reference Smith SA, Edden RA, Farrell JA, Barker PB, Van Zijl P (2008) Measurement of T1 and T2 in the cervical spinal cord at 3 Tesla. Magn Reson Med 60(1):213–219PubMedPubMedCentralCrossRef Smith SA, Edden RA, Farrell JA, Barker PB, Van Zijl P (2008) Measurement of T1 and T2 in the cervical spinal cord at 3 Tesla. Magn Reson Med 60(1):213–219PubMedPubMedCentralCrossRef
7.
go back to reference Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25(6):748–753PubMedCrossRef Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25(6):748–753PubMedCrossRef
8.
go back to reference Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging 39(3):617–623PubMedCrossRef Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging 39(3):617–623PubMedCrossRef
9.
go back to reference Papinutto N, Schlaeger R, Panara V, Zhu AH, Caverzasi E, Stern WA, Hauser SL, Henry RG (2015) Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: a 2D phase sensitive inversion recovery imaging study. PLoS One 10(3):e0118576PubMedPubMedCentralCrossRef Papinutto N, Schlaeger R, Panara V, Zhu AH, Caverzasi E, Stern WA, Hauser SL, Henry RG (2015) Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: a 2D phase sensitive inversion recovery imaging study. PLoS One 10(3):e0118576PubMedPubMedCentralCrossRef
10.
go back to reference Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281PubMedCrossRef Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281PubMedCrossRef
11.
go back to reference Held P, Dorenbeck U, Seitz J, Fründ R, Albrich H (2003) MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse. A T2*-weighted feasibility study. J Neuroradiol 30(2):83–90PubMed Held P, Dorenbeck U, Seitz J, Fründ R, Albrich H (2003) MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse. A T2*-weighted feasibility study. J Neuroradiol 30(2):83–90PubMed
12.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRef
13.
go back to reference Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530CrossRef Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530CrossRef
14.
go back to reference Aspert N, Santa Cruz D, Ebrahimi T (2002) MESH: measuring errors between surfaces using the Hausdorff distance. Proceedings of the 2002 IEEE International Conference on Multimedia and Expo. ICME, Lausanne, pp 705–708 Aspert N, Santa Cruz D, Ebrahimi T (2002) MESH: measuring errors between surfaces using the Hausdorff distance. Proceedings of the 2002 IEEE International Conference on Multimedia and Expo. ICME, Lausanne, pp 705–708
15.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921PubMedPubMedCentralCrossRef Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921PubMedPubMedCentralCrossRef
16.
go back to reference Tench CR, Morgan PS, Constantinescu CS (2005) Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J Magn Reson Imaging 21(3):197–203PubMedCrossRef Tench CR, Morgan PS, Constantinescu CS (2005) Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J Magn Reson Imaging 21(3):197–203PubMedCrossRef
17.
go back to reference El Mendili M-M, Chen R, Tiret B, Villard N, Trunet S, Pélégrini-Issac M, Lehéricy S, Pradat P-F, Benali H (2015) Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template. PLoS One 10(3):e0122224PubMedPubMedCentralCrossRef El Mendili M-M, Chen R, Tiret B, Villard N, Trunet S, Pélégrini-Issac M, Lehéricy S, Pradat P-F, Benali H (2015) Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template. PLoS One 10(3):e0122224PubMedPubMedCentralCrossRef
18.
go back to reference Behrens T, Rohr K, Stiehl HS (2003) Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. IEEE Trans Syst Man Cybern B Cybern 33(4):554–561PubMedCrossRef Behrens T, Rohr K, Stiehl HS (2003) Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. IEEE Trans Syst Man Cybern B Cybern 33(4):554–561PubMedCrossRef
19.
go back to reference Zivadinov R, Banas AC, Yella V, Abdelrahman N, Weinstock-Guttman B, Dwyer MG (2008) Comparison of three different methods for measurement of cervical cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol 29(2):319–325PubMedCrossRef Zivadinov R, Banas AC, Yella V, Abdelrahman N, Weinstock-Guttman B, Dwyer MG (2008) Comparison of three different methods for measurement of cervical cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol 29(2):319–325PubMedCrossRef
20.
go back to reference Coulon O, Hickman SJ, Parker GJ, Barker GJ, Miller DH, Arridge SR (2002) Quantification of spinal cord atrophy from magnetic resonance images via a B-spline active surface model. Magn Reson Med 47(6):1176–1185PubMedCrossRef Coulon O, Hickman SJ, Parker GJ, Barker GJ, Miller DH, Arridge SR (2002) Quantification of spinal cord atrophy from magnetic resonance images via a B-spline active surface model. Magn Reson Med 47(6):1176–1185PubMedCrossRef
21.
go back to reference Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50(2):446–455PubMedPubMedCentralCrossRef Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50(2):446–455PubMedPubMedCentralCrossRef
22.
go back to reference McIntosh C, Hamarneh G (2006) Spinal crawlers: deformable organisms for spinal cord segmentation and analysis. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006, vol 4190. Lecture notes in computer science, Springer, Berlin, pp 808–815CrossRef McIntosh C, Hamarneh G (2006) Spinal crawlers: deformable organisms for spinal cord segmentation and analysis. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006, vol 4190. Lecture notes in computer science, Springer, Berlin, pp 808–815CrossRef
23.
go back to reference McIntosh C, Hamarneh G, Toom M, Tam RC (2011) Spinal cord segmentation for volume estimation in healthy and multiple sclerosis subjects using crawlers and minimal paths. In: Proceedings of the First IEEE international conference on healthcare informatics, imaging and systems biology, HISB, San Jose, CA, IEEE, pp 25–31 McIntosh C, Hamarneh G, Toom M, Tam RC (2011) Spinal cord segmentation for volume estimation in healthy and multiple sclerosis subjects using crawlers and minimal paths. In: Proceedings of the First IEEE international conference on healthcare informatics, imaging and systems biology, HISB, San Jose, CA, IEEE, pp 25–31
24.
go back to reference De Leener B, Kadoury S, Cohen-Adad J (2014) Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage 98:528–536PubMedCrossRef De Leener B, Kadoury S, Cohen-Adad J (2014) Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage 98:528–536PubMedCrossRef
25.
go back to reference De Leener B, Cohen-Adad J, Kadoury S (2015) Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans Med Imaging 34(8):1705–1718PubMedCrossRef De Leener B, Cohen-Adad J, Kadoury S (2015) Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans Med Imaging 34(8):1705–1718PubMedCrossRef
26.
go back to reference Ullmann E, Paquette JFP, Thong WE, Cohen-Adad J (2014) Automatic labeling of vertebral levels using a robust template-based approach. Int J Biomed Imaging 2014:719520PubMedPubMedCentralCrossRef Ullmann E, Paquette JFP, Thong WE, Cohen-Adad J (2014) Automatic labeling of vertebral levels using a robust template-based approach. Int J Biomed Imaging 2014:719520PubMedPubMedCentralCrossRef
27.
go back to reference Koh J, Kim T, Chaudhary V, Dhillon G (2010) Automatic segmentation of the spinal cord and the dural sac in lumbar MR images using gradient vector flow field. In: Proceedings of the 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC 2010), Buenos Aires, IEEE, pp 3117–3120 Koh J, Kim T, Chaudhary V, Dhillon G (2010) Automatic segmentation of the spinal cord and the dural sac in lumbar MR images using gradient vector flow field. In: Proceedings of the 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC 2010), Buenos Aires, IEEE, pp 3117–3120
28.
go back to reference Koh J, Scott PD, Chaudhary V, Dhillon G (2011) An automatic segmentation method of the spinal canal from clinical MR images based on an attention model and an active contour model. In: Proceedings of the 8th IEEE international symposium on biomedical imaging: from nano to macro, ISBI, Chicago, IL. pp 1467–1471 Koh J, Scott PD, Chaudhary V, Dhillon G (2011) An automatic segmentation method of the spinal canal from clinical MR images based on an attention model and an active contour model. In: Proceedings of the 8th IEEE international symposium on biomedical imaging: from nano to macro, ISBI, Chicago, IL. pp 1467–1471
29.
go back to reference Van Uitert R, Bitter I, Butman JA (2005) Semi-automatic spinal cord segmentation and quantification. In: Proceedings of the 19th international congress and exhibition, computer assisted radiology and surgery, Berlin. pp 224–229 Van Uitert R, Bitter I, Butman JA (2005) Semi-automatic spinal cord segmentation and quantification. In: Proceedings of the 19th international congress and exhibition, computer assisted radiology and surgery, Berlin. pp 224–229
30.
go back to reference Sonkova P, Evangelou IE, Gallo A, Cantor FK, Ohayon J, McFarland HF, Bagnato F (2008) Semi-automatic segmentation and modeling of the cervical spinal cord for volume quantification in multiple sclerosis patients from magnetic resonance images. In: Proceedings of SPIE 6914, medical imaging 2008: image processing. International Society for Optics and Photonics, San Diego, CA, p 69144I Sonkova P, Evangelou IE, Gallo A, Cantor FK, Ohayon J, McFarland HF, Bagnato F (2008) Semi-automatic segmentation and modeling of the cervical spinal cord for volume quantification in multiple sclerosis patients from magnetic resonance images. In: Proceedings of SPIE 6914, medical imaging 2008: image processing. International Society for Optics and Photonics, San Diego, CA, p 69144I
31.
go back to reference Kawahara J, McIntosh C, Tam R, Hamarneh G (2013) Globally optimal spinal cord segmentation using a minimal path in high dimensions. In: Proceedings of the 10th international symposium on biomedical imaging, ISBI, San Francisco, CA. pp 848–851 Kawahara J, McIntosh C, Tam R, Hamarneh G (2013) Globally optimal spinal cord segmentation using a minimal path in high dimensions. In: Proceedings of the 10th international symposium on biomedical imaging, ISBI, San Francisco, CA. pp 848–851
32.
go back to reference Kawahara J, McIntosh C, Tam R, Hamarneh G (2013) Augmenting auto-context with global geometric features for spinal cord segmentation. In: Proceedings of the 4th international workshop on machine learning in medical imaging, Nagoya, Japan. pp 211–218 Kawahara J, McIntosh C, Tam R, Hamarneh G (2013) Augmenting auto-context with global geometric features for spinal cord segmentation. In: Proceedings of the 4th international workshop on machine learning in medical imaging, Nagoya, Japan. pp 211–218
33.
go back to reference Law MW, Garvin GJ, Tummala S, Tay K, Leung AE, Li S (2013) Gradient competition anisotropy for centerline extraction and segmentation of spinal cords. In: Proceedings of the 23rd international conference on information processing in medical imaging, Asilomar, CA, pp 49–61 Law MW, Garvin GJ, Tummala S, Tay K, Leung AE, Li S (2013) Gradient competition anisotropy for centerline extraction and segmentation of spinal cords. In: Proceedings of the 23rd international conference on information processing in medical imaging, Asilomar, CA, pp 49–61
34.
go back to reference Carbonell-Caballero J, Manjon JV, Marti-Bonmati L, Olalla JR, Casanova B, de la Iglesia-Vaya M, Coret F, Robles M (2006) Accurate quantification methods to evaluate cervical cord atrophy in multiple sclerosis patients. Magn Reson Mater Phy 19(5):237–246CrossRef Carbonell-Caballero J, Manjon JV, Marti-Bonmati L, Olalla JR, Casanova B, de la Iglesia-Vaya M, Coret F, Robles M (2006) Accurate quantification methods to evaluate cervical cord atrophy in multiple sclerosis patients. Magn Reson Mater Phy 19(5):237–246CrossRef
35.
go back to reference Bergo FPG, Franca MC, Chevis CF, Cendes F (2012) SpineSeg: a segmentation and measurement tool for evaluation of spinal cord atrophy. In: Proceedings of the 7th Iberian conference on information systems and technologies, CISTI, Madrid, pp 1–4 Bergo FPG, Franca MC, Chevis CF, Cendes F (2012) SpineSeg: a segmentation and measurement tool for evaluation of spinal cord atrophy. In: Proceedings of the 7th Iberian conference on information systems and technologies, CISTI, Madrid, pp 1–4
36.
go back to reference Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRef Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRef
37.
go back to reference Kayal N (2013) An investigation of grow cut algorithm for segmentation of MRI spinal cord images in normals and patients with SCI. Temple University Graduate School, Ann Arbor Kayal N (2013) An investigation of grow cut algorithm for segmentation of MRI spinal cord images in normals and patients with SCI. Temple University Graduate School, Ann Arbor
38.
go back to reference Fonov VS, Le Troter A, Taso M, De Leener B, Leveque G, Benhamou M, Sdika M, Benali H, Pradat PF, Collins DL, Callot V, Cohen-Adad J (2014) Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 102(Pt 2):817–827PubMedCrossRef Fonov VS, Le Troter A, Taso M, De Leener B, Leveque G, Benhamou M, Sdika M, Benali H, Pradat PF, Collins DL, Callot V, Cohen-Adad J (2014) Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 102(Pt 2):817–827PubMedCrossRef
39.
go back to reference Pezold S, Amann M, Weier K, Fundana K, Radue EW, Sprenger T, Cattin PC (2014) A semi-automatic method for the quantification of spinal cord atrophy. In: Proceedings of the workshop held at the 16th international conference on medical image computing and computer assisted intervention, Nagoya, Japan, pp 143–155 Pezold S, Amann M, Weier K, Fundana K, Radue EW, Sprenger T, Cattin PC (2014) A semi-automatic method for the quantification of spinal cord atrophy. In: Proceedings of the workshop held at the 16th international conference on medical image computing and computer assisted intervention, Nagoya, Japan, pp 143–155
40.
go back to reference Stroman PW, Figley CR, Cahill CM (2008) Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 26(6):809–814PubMedCrossRef Stroman PW, Figley CR, Cahill CM (2008) Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 26(6):809–814PubMedCrossRef
41.
go back to reference Yen C, Su H-R, Lai S-H, Liu K-C, Lee R-R (2013) 3D Spinal cord and nerves segmentation from STIR-MRI. In: Proceedings of the international computer symposium ICS 2012, Hualien, Taiwan, pp 383–392 Yen C, Su H-R, Lai S-H, Liu K-C, Lee R-R (2013) 3D Spinal cord and nerves segmentation from STIR-MRI. In: Proceedings of the international computer symposium ICS 2012, Hualien, Taiwan, pp 383–392
42.
go back to reference Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783PubMedCrossRef Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783PubMedCrossRef
43.
go back to reference Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL (2013) Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. Neuroimage 83:1051–1062PubMedCrossRef Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL (2013) Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. Neuroimage 83:1051–1062PubMedCrossRef
44.
go back to reference Weiler F, Daams M, Lukas C, Barkhof F, Hahn HK (2015) Highly accurate volumetry of the spinal cord. In: Proceedings of SPIE 9413, medical imaging 2015: image processing, Orlando, Florida, p 941302 Weiler F, Daams M, Lukas C, Barkhof F, Hahn HK (2015) Highly accurate volumetry of the spinal cord. In: Proceedings of SPIE 9413, medical imaging 2015: image processing, Orlando, Florida, p 941302
45.
go back to reference Pezold S, Fundana K, Amann M, Andelova M, Pfister A, Sprenger T, Cattin P (2015) Automatic segmentation of the spinal cord using continuous max flow with cross-sectional similarity prior and tubularity features. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, vol 20. Lecture Notes in Computational Vision and Biomechanics. Springer International Publishing, pp 107–118 Pezold S, Fundana K, Amann M, Andelova M, Pfister A, Sprenger T, Cattin P (2015) Automatic segmentation of the spinal cord using continuous max flow with cross-sectional similarity prior and tubularity features. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, vol 20. Lecture Notes in Computational Vision and Biomechanics. Springer International Publishing, pp 107–118
46.
go back to reference Fradet L, Arnoux PJ, Ranjeva JP, Petit Y, Callot V (2014) Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine 39(4):E262–E269 (Phila Pa 1976) PubMedCrossRef Fradet L, Arnoux PJ, Ranjeva JP, Petit Y, Callot V (2014) Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine 39(4):E262–E269 (Phila Pa 1976) PubMedCrossRef
47.
go back to reference Held P, Seitz J, Frund R, Nitz W, Lenhart M, Geissler A (2001) Comparison of two-dimensional gradient echo, turbo spin echo and two-dimensional turbo gradient spin echo sequences in MRI of the cervical spinal cord anatomy. Eur J Radiol 38(1):64–71PubMedCrossRef Held P, Seitz J, Frund R, Nitz W, Lenhart M, Geissler A (2001) Comparison of two-dimensional gradient echo, turbo spin echo and two-dimensional turbo gradient spin echo sequences in MRI of the cervical spinal cord anatomy. Eur J Radiol 38(1):64–71PubMedCrossRef
48.
go back to reference Samson R, Ciccarelli O, Kachramanoglou C, Brightman L, Lutti A, Thomas D, Weiskopf N, Wheeler-Kingshott C (2013) Tissue-and column-specific measurements from multi-parameter mapping of the human cervical spinal cord at 3 T. NMR Biomed 26(12):1823–1830PubMedPubMedCentralCrossRef Samson R, Ciccarelli O, Kachramanoglou C, Brightman L, Lutti A, Thomas D, Weiskopf N, Wheeler-Kingshott C (2013) Tissue-and column-specific measurements from multi-parameter mapping of the human cervical spinal cord at 3 T. NMR Biomed 26(12):1823–1830PubMedPubMedCentralCrossRef
49.
go back to reference Ellingson BM, Ulmer JL, Schmit BD (2007) Gray and white matter delineation in the human spinal cord using diffusion tensor imaging and fuzzy logic. Acad Radiol 14(7):847–858PubMedCrossRef Ellingson BM, Ulmer JL, Schmit BD (2007) Gray and white matter delineation in the human spinal cord using diffusion tensor imaging and fuzzy logic. Acad Radiol 14(7):847–858PubMedCrossRef
50.
go back to reference Ellingson BM, Ulmer JL, Schmit BD (2008) Morphology and morphometry of human chronic spinal cord injury using diffusion tensor imaging and Fuzzy logic. Ann Biomed Eng 36(2):224–236PubMedCrossRef Ellingson BM, Ulmer JL, Schmit BD (2008) Morphology and morphometry of human chronic spinal cord injury using diffusion tensor imaging and Fuzzy logic. Ann Biomed Eng 36(2):224–236PubMedCrossRef
51.
go back to reference Yiannakas MC, Kearney H, Samson RS, Chard DT, Ciccarelli O, Miller DH, Wheeler-Kingshott CA (2012) Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 63(3):1054–1059PubMedCrossRef Yiannakas MC, Kearney H, Samson RS, Chard DT, Ciccarelli O, Miller DH, Wheeler-Kingshott CA (2012) Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 63(3):1054–1059PubMedCrossRef
52.
go back to reference Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58(3):246–261CrossRef Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58(3):246–261CrossRef
53.
go back to reference Tang L, Wen Y, Zhou Z, von Deneen KM, Huang D, Ma L (2013) Reduced field-of-view DTI segmentation of cervical spine tissue. Magn Reson Imaging 31(9):1507–1514PubMedCrossRef Tang L, Wen Y, Zhou Z, von Deneen KM, Huang D, Ma L (2013) Reduced field-of-view DTI segmentation of cervical spine tissue. Magn Reson Imaging 31(9):1507–1514PubMedCrossRef
54.
go back to reference Asman AJ, Bryan FW, Smith SA, Reich DS, Landman BA (2014) Groupwise multi-atlas segmentation of the spinal cord’s internal structure. Med Image Anal 18(3):460–471PubMedPubMedCentralCrossRef Asman AJ, Bryan FW, Smith SA, Reich DS, Landman BA (2014) Groupwise multi-atlas segmentation of the spinal cord’s internal structure. Med Image Anal 18(3):460–471PubMedPubMedCentralCrossRef
55.
go back to reference De Leener B, Roux A, Taso M, Callot V, Cohen-Adad J (2015) Spinal cord gray and white matter segmentation using atlas deformation. In: Proceedings of the 23th Annual Meeting of ISMRM, Toronto, Canada, Toronto, p 4424 De Leener B, Roux A, Taso M, Callot V, Cohen-Adad J (2015) Spinal cord gray and white matter segmentation using atlas deformation. In: Proceedings of the 23th Annual Meeting of ISMRM, Toronto, Canada, Toronto, p 4424
56.
go back to reference Taso M, Le Troter A, Sdika M, Cohen-Adad J, Arnoux PJ, Guye M, Ranjeva JP, Callot V (2015) A reliable spatially normalized template of the human spinal cord—applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Neuroimage 117:20–28PubMedCrossRef Taso M, Le Troter A, Sdika M, Cohen-Adad J, Arnoux PJ, Guye M, Ranjeva JP, Callot V (2015) A reliable spatially normalized template of the human spinal cord—applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Neuroimage 117:20–28PubMedCrossRef
57.
go back to reference Taso M, Le Troter A, Sdika M, Ranjeva JP, Guye M, Bernard M, Callot V (2014) Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magn Reson Mater Phy 27(3):257–267CrossRef Taso M, Le Troter A, Sdika M, Ranjeva JP, Guye M, Bernard M, Callot V (2014) Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magn Reson Mater Phy 27(3):257–267CrossRef
58.
go back to reference Cohen-Adad J, Zhao W, Keil B, Ratai EM, Triantafyllou C, Lawson R, Dheel C, Wald LL, Rosen BR, Cudkowicz M (2013) 7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle Nerve 47(5):760–762PubMedCrossRef Cohen-Adad J, Zhao W, Keil B, Ratai EM, Triantafyllou C, Lawson R, Dheel C, Wald LL, Rosen BR, Cudkowicz M (2013) 7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle Nerve 47(5):760–762PubMedCrossRef
59.
go back to reference Sigmund E, Suero G, Hu C, McGorty K, Sodickson D, Wiggins G, Helpern J (2012) High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed 25(7):891–899PubMedPubMedCentralCrossRef Sigmund E, Suero G, Hu C, McGorty K, Sodickson D, Wiggins G, Helpern J (2012) High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed 25(7):891–899PubMedPubMedCentralCrossRef
60.
go back to reference Lundell H, Barthelemy D, Skimminge A, Dyrby T, Biering-Sørensen F, Nielsen JB (2011) Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 49(1):70–75PubMedCrossRef Lundell H, Barthelemy D, Skimminge A, Dyrby T, Biering-Sørensen F, Nielsen JB (2011) Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 49(1):70–75PubMedCrossRef
61.
go back to reference Klein JP, Arora A, Neema M, Healy BC, Tauhid S, Goldberg-Zimring D, Chavarro-Nieto C, Stankiewicz JM, Cohen AB, Buckle GJ, Houtchens MK, Ceccarelli A, Dell’Oglio E, Guttmann CR, Alsop DC, Hackney DB, Bakshi R (2011) A 3T MR imaging investigation of the topography of whole spinal cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol 32(6):1138–1142PubMedPubMedCentralCrossRef Klein JP, Arora A, Neema M, Healy BC, Tauhid S, Goldberg-Zimring D, Chavarro-Nieto C, Stankiewicz JM, Cohen AB, Buckle GJ, Houtchens MK, Ceccarelli A, Dell’Oglio E, Guttmann CR, Alsop DC, Hackney DB, Bakshi R (2011) A 3T MR imaging investigation of the topography of whole spinal cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol 32(6):1138–1142PubMedPubMedCentralCrossRef
62.
go back to reference Kameyama T, Hashizume Y, Sobue G (1996) Morphologic features of the normal human cadaveric spinal cord. Spine 21(11):1285–1290PubMedCrossRef Kameyama T, Hashizume Y, Sobue G (1996) Morphologic features of the normal human cadaveric spinal cord. Spine 21(11):1285–1290PubMedCrossRef
63.
go back to reference Hickman S, Hadjiprocopis A, Coulon O, Miller D, Barker G (2004) Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging 22(6):891–895PubMedCrossRef Hickman S, Hadjiprocopis A, Coulon O, Miller D, Barker G (2004) Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging 22(6):891–895PubMedCrossRef
64.
go back to reference Ciccarelli O, Wheeler-Kingshott C, McLean M, Cercignani M, Wimpey K, Miller D, Thompson A (2007) Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain 130(8):2220–2231PubMedCrossRef Ciccarelli O, Wheeler-Kingshott C, McLean M, Cercignani M, Wimpey K, Miller D, Thompson A (2007) Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain 130(8):2220–2231PubMedCrossRef
65.
go back to reference Cohen-Adad J, Descoteaux M, Rossignol S, Hoge RD, Deriche R, Benali H (2008) Detection of multiple pathways in the spinal cord using q-ball imaging. Neuroimage 42(2):739–749PubMedCrossRef Cohen-Adad J, Descoteaux M, Rossignol S, Hoge RD, Deriche R, Benali H (2008) Detection of multiple pathways in the spinal cord using q-ball imaging. Neuroimage 42(2):739–749PubMedCrossRef
66.
go back to reference Gullapalli J, Krejza J, Schwartz ED (2006) In vivo DTI evaluation of white matter tracts in rat spinal cord. J Magn Reson Imaging 24(1):231–234PubMedCrossRef Gullapalli J, Krejza J, Schwartz ED (2006) In vivo DTI evaluation of white matter tracts in rat spinal cord. J Magn Reson Imaging 24(1):231–234PubMedCrossRef
67.
go back to reference Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT, Song S-K, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 55(4):1454–1460PubMedPubMedCentralCrossRef Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT, Song S-K, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 55(4):1454–1460PubMedPubMedCentralCrossRef
68.
go back to reference Lindberg PG, Feydy A, Maier MA (2010) White matter organization in cervical spinal cord relates differently to age and control of grip force in healthy subjects. J Neurosci 30(11):4102–4109PubMedCrossRef Lindberg PG, Feydy A, Maier MA (2010) White matter organization in cervical spinal cord relates differently to age and control of grip force in healthy subjects. J Neurosci 30(11):4102–4109PubMedCrossRef
69.
go back to reference Narayana PA, Grill RJ, Chacko T, Vang R (2004) Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging. J Neurosci Res 78(5):749–759PubMedCrossRef Narayana PA, Grill RJ, Chacko T, Vang R (2004) Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging. J Neurosci Res 78(5):749–759PubMedCrossRef
70.
go back to reference Onu M, Gervai P, Cohen-Adad J, Lawrence J, Kornelsen J, Tomanek B, Sboto-Frankenstein UN (2010) Human cervical spinal cord funiculi: investigation with magnetic resonance diffusion tensor imaging. J Magn Reson Imaging 31(4):829–837PubMedCrossRef Onu M, Gervai P, Cohen-Adad J, Lawrence J, Kornelsen J, Tomanek B, Sboto-Frankenstein UN (2010) Human cervical spinal cord funiculi: investigation with magnetic resonance diffusion tensor imaging. J Magn Reson Imaging 31(4):829–837PubMedCrossRef
71.
go back to reference Qian W, Chan Q, Mak H, Zhang Z, Anthony MP, Yau KKW, Khong PL, Chan KH, Kim M (2011) Quantitative assessment of the cervical spinal cord damage in neuromyelitis optica using diffusion tensor imaging at 3 Tesla. J Magn Reson Imaging 33(6):1312–1320PubMedCrossRef Qian W, Chan Q, Mak H, Zhang Z, Anthony MP, Yau KKW, Khong PL, Chan KH, Kim M (2011) Quantitative assessment of the cervical spinal cord damage in neuromyelitis optica using diffusion tensor imaging at 3 Tesla. J Magn Reson Imaging 33(6):1312–1320PubMedCrossRef
72.
go back to reference Smith SA, Jones CK, Gifford A, Belegu V, Chodkowski B, Farrell JA, Landman BA, Reich DS, Calabresi PA, McDonald JW (2010) Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 Tesla. NMR Biomed 23(2):207–217PubMedPubMedCentral Smith SA, Jones CK, Gifford A, Belegu V, Chodkowski B, Farrell JA, Landman BA, Reich DS, Calabresi PA, McDonald JW (2010) Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 Tesla. NMR Biomed 23(2):207–217PubMedPubMedCentral
73.
go back to reference Xu J, Shimony JS, Klawiter EC, Snyder AZ, Trinkaus K, Naismith RT, Benzinger TL, Cross AH, Song SK (2013) Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage 67:64–76PubMedPubMedCentralCrossRef Xu J, Shimony JS, Klawiter EC, Snyder AZ, Trinkaus K, Naismith RT, Benzinger TL, Cross AH, Song SK (2013) Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage 67:64–76PubMedPubMedCentralCrossRef
74.
go back to reference Lévy S, Benhamou M, Naaman C, Rainville P, Callot V, Cohen-Adad J (2015) White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage 119:262–271PubMedCrossRef Lévy S, Benhamou M, Naaman C, Rainville P, Callot V, Cohen-Adad J (2015) White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage 119:262–271PubMedCrossRef
75.
go back to reference Taso M, Girard O, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva J, Callot V (2015) Regional and age-related variations of the healthy spinal cord structure assessed by multimodal MRI. In: Proceedings of the 23th annual meeting of ISMRM, Toronto, Canada, p 681 Taso M, Girard O, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva J, Callot V (2015) Regional and age-related variations of the healthy spinal cord structure assessed by multimodal MRI. In: Proceedings of the 23th annual meeting of ISMRM, Toronto, Canada, p 681
76.
go back to reference Stroman P, Tomanek B, Krause V, Frankenstein U, Malisza K (2002) Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage 17(4):1854–1860PubMedCrossRef Stroman P, Tomanek B, Krause V, Frankenstein U, Malisza K (2002) Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage 17(4):1854–1860PubMedCrossRef
77.
go back to reference Stroman PW (2009) Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 27(10):1333–1346PubMedCrossRef Stroman PW (2009) Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 27(10):1333–1346PubMedCrossRef
78.
go back to reference McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127PubMedCrossRef McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127PubMedCrossRef
79.
go back to reference Kidd D, Thorpe J, Thompson A, Kendall B, Moseley I, MacManus D, McDonald W, Miller D (1993) Spinal cord MRI using multi-array coils and fast spin echo II. Findings in multiple sclerosis. Neurology 43(12):2632PubMedCrossRef Kidd D, Thorpe J, Thompson A, Kendall B, Moseley I, MacManus D, McDonald W, Miller D (1993) Spinal cord MRI using multi-array coils and fast spin echo II. Findings in multiple sclerosis. Neurology 43(12):2632PubMedCrossRef
80.
go back to reference Bakshi R, Dandamudi VS, Neema M, De C, Bermel RA (2005) Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis. J Neuroimaging 15(4 Suppl):30S–45SPubMedCrossRef Bakshi R, Dandamudi VS, Neema M, De C, Bermel RA (2005) Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis. J Neuroimaging 15(4 Suppl):30S–45SPubMedCrossRef
81.
go back to reference Bastianello S, Paolillo A, Giugni E, Giuliani S, Evangelisti G, Luccichenti G, Angeloni U, Colonnese C, Salvetti M, Gasperini C, Pozzilli C, Fieschi C (2000) MRI of spinal cord in MS. J Neurovirol 6(Suppl 2):S130–S133PubMed Bastianello S, Paolillo A, Giugni E, Giuliani S, Evangelisti G, Luccichenti G, Angeloni U, Colonnese C, Salvetti M, Gasperini C, Pozzilli C, Fieschi C (2000) MRI of spinal cord in MS. J Neurovirol 6(Suppl 2):S130–S133PubMed
82.
go back to reference Stevenson VL, Leary SM, Losseff NA, Parker GJ, Barker GJ, Husmani Y, Miller DH, Thompson AJ (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51(1):234–238PubMedCrossRef Stevenson VL, Leary SM, Losseff NA, Parker GJ, Barker GJ, Husmani Y, Miller DH, Thompson AJ (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51(1):234–238PubMedCrossRef
83.
go back to reference Liu C, Edwards S, Gong Q, Roberts N, Blumhardt LD (1999) Three-dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 66(3):323–330PubMedPubMedCentralCrossRef Liu C, Edwards S, Gong Q, Roberts N, Blumhardt LD (1999) Three-dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 66(3):323–330PubMedPubMedCentralCrossRef
84.
go back to reference Ingle GT, Stevenson VL, Miller DH, Thompson AJ (2003) Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 126(Pt 11):2528–2536PubMedCrossRef Ingle GT, Stevenson VL, Miller DH, Thompson AJ (2003) Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 126(Pt 11):2528–2536PubMedCrossRef
85.
go back to reference Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH (2002) The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 8(6):532–533PubMedCrossRef Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH (2002) The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 8(6):532–533PubMedCrossRef
86.
go back to reference Lin X, Blumhardt LD, Constantinescu CS (2003) The relationship of brain and cervical cord volume to disability in clinical subtypes of multiple sclerosis: a three-dimensional MRI study. Acta Neurol Scand 108(6):401–406PubMedCrossRef Lin X, Blumhardt LD, Constantinescu CS (2003) The relationship of brain and cervical cord volume to disability in clinical subtypes of multiple sclerosis: a three-dimensional MRI study. Acta Neurol Scand 108(6):401–406PubMedCrossRef
87.
go back to reference Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis an expanded disability status scale (EDSS). Neurology 33(11):1444–1452PubMedCrossRef Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis an expanded disability status scale (EDSS). Neurology 33(11):1444–1452PubMedCrossRef
88.
go back to reference Schlaeger R, Papinutto N, Panara V, Bevan C, Lobach IV, Bucci M, Caverzasi E, Gelfand JM, Green AJ, Jordan KM, Stern WA, von Budingen HC, Waubant E, Zhu AH, Goodin DS, Cree BA, Hauser SL, Henry RG (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76(4):568–580PubMedCrossRef Schlaeger R, Papinutto N, Panara V, Bevan C, Lobach IV, Bucci M, Caverzasi E, Gelfand JM, Green AJ, Jordan KM, Stern WA, von Budingen HC, Waubant E, Zhu AH, Goodin DS, Cree BA, Hauser SL, Henry RG (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76(4):568–580PubMedCrossRef
89.
go back to reference Yiannakas M, Mustafa A, De Leener B, Cohen-Adad J, Kearney H, Miller D, Wheeler-Kingshott C (2015) Fully automated segmentation of the cervical spinal cord using PropSeg: application to multiple sclerosis. In: Proceedings of the 23th annual meeting of ISMRM, Toronto, Canada, p 4354 Yiannakas M, Mustafa A, De Leener B, Cohen-Adad J, Kearney H, Miller D, Wheeler-Kingshott C (2015) Fully automated segmentation of the cervical spinal cord using PropSeg: application to multiple sclerosis. In: Proceedings of the 23th annual meeting of ISMRM, Toronto, Canada, p 4354
90.
go back to reference Freund P, Wheeler-Kingshott C, Jackson J, Miller D, Thompson A, Ciccarelli O (2010) Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Mult Scler 16(10):1193–1202PubMedPubMedCentralCrossRef Freund P, Wheeler-Kingshott C, Jackson J, Miller D, Thompson A, Ciccarelli O (2010) Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Mult Scler 16(10):1193–1202PubMedPubMedCentralCrossRef
91.
go back to reference Zackowski KM, Smith SA, Reich DS, Gordon-Lipkin E, Chodkowski BA, Sambandan DR, Shteyman M, Bastian AJ, van Zijl PC, Calabresi PA (2009) Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain 132(Pt 5):1200–1209PubMedPubMedCentralCrossRef Zackowski KM, Smith SA, Reich DS, Gordon-Lipkin E, Chodkowski BA, Sambandan DR, Shteyman M, Bastian AJ, van Zijl PC, Calabresi PA (2009) Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain 132(Pt 5):1200–1209PubMedPubMedCentralCrossRef
92.
go back to reference Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53(5):1107–1114PubMedCrossRef Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53(5):1107–1114PubMedCrossRef
94.
go back to reference Wang Y, Wu A, Chen X, Zhang L, Lin Y, Sun S, Cai W, Zhang B, Kang Z, Qiu W, Hu X, Lu Z (2014) Comparison of clinical characteristics between neuromyelitis optica spectrum disorders with and without spinal cord atrophy. BMC Neurol 14:246PubMedPubMedCentralCrossRef Wang Y, Wu A, Chen X, Zhang L, Lin Y, Sun S, Cai W, Zhang B, Kang Z, Qiu W, Hu X, Lu Z (2014) Comparison of clinical characteristics between neuromyelitis optica spectrum disorders with and without spinal cord atrophy. BMC Neurol 14:246PubMedPubMedCentralCrossRef
95.
go back to reference Liu Y, Wang J, Daams M, Weiler F, Hahn HK, Duan Y, Huang J, Ren Z, Ye J, Dong H, Vrenken H, Wattjes MP, Shi FD, Li K, Barkhof F (2015) Differential patterns of spinal cord and brain atrophy in NMO and MS. Neurology 84(14):1465–1472PubMedCrossRef Liu Y, Wang J, Daams M, Weiler F, Hahn HK, Duan Y, Huang J, Ren Z, Ye J, Dong H, Vrenken H, Wattjes MP, Shi FD, Li K, Barkhof F (2015) Differential patterns of spinal cord and brain atrophy in NMO and MS. Neurology 84(14):1465–1472PubMedCrossRef
96.
go back to reference Nakamura M, Miyazawa I, Fujihara K, Nakashima I, Misu T, Watanabe S, Takahashi T, Itoyama Y (2008) Preferential spinal central gray matter involvement in neuromyelitis optica. An MRI study. J Neurol 255(2):163–170PubMedCrossRef Nakamura M, Miyazawa I, Fujihara K, Nakashima I, Misu T, Watanabe S, Takahashi T, Itoyama Y (2008) Preferential spinal central gray matter involvement in neuromyelitis optica. An MRI study. J Neurol 255(2):163–170PubMedCrossRef
97.
go back to reference Brooks BR (1996) Natural history of ALS: symptoms, strength, pulmonary function, and disability. Neurology 47(4 Suppl 2):S71–S81 (discussion S81-72) PubMedCrossRef Brooks BR (1996) Natural history of ALS: symptoms, strength, pulmonary function, and disability. Neurology 47(4 Suppl 2):S71–S81 (discussion S81-72) PubMedCrossRef
98.
go back to reference Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107PubMedCrossRef Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107PubMedCrossRef
99.
go back to reference Shefner J, Watson M, Simionescu L, Caress J, Burns T, Maragakis N, Benatar M, David W, Sharma K, Rutkove S (2011) Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology 77(3):235–241PubMedPubMedCentralCrossRef Shefner J, Watson M, Simionescu L, Caress J, Burns T, Maragakis N, Benatar M, David W, Sharma K, Rutkove S (2011) Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology 77(3):235–241PubMedPubMedCentralCrossRef
100.
101.
go back to reference Cohen-Adad J, El Mendili MM, Morizot-Koutlidis R, Lehericy S, Meininger V, Blancho S, Rossignol S, Benali H, Pradat PF (2013) Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration. Amyotroph Lateral Scler Frontotemporal Degener 14(1):30–38PubMedCrossRef Cohen-Adad J, El Mendili MM, Morizot-Koutlidis R, Lehericy S, Meininger V, Blancho S, Rossignol S, Benali H, Pradat PF (2013) Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration. Amyotroph Lateral Scler Frontotemporal Degener 14(1):30–38PubMedCrossRef
102.
go back to reference Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26PubMedCrossRef Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26PubMedCrossRef
103.
go back to reference Cohen-Adad J, Leblond H, Delivet-Mongrain H, Martinez M, Benali H, Rossignol S (2011) Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. Neuroimage 57(3):1068–1076PubMedCrossRef Cohen-Adad J, Leblond H, Delivet-Mongrain H, Martinez M, Benali H, Rossignol S (2011) Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. Neuroimage 57(3):1068–1076PubMedCrossRef
104.
go back to reference Cohen-Adad J, El Mendili M, Lehéricy S, Pradat P, Blancho S, Rossignol S, Benali H (2011) Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55(3):1024–1033PubMedCrossRef Cohen-Adad J, El Mendili M, Lehéricy S, Pradat P, Blancho S, Rossignol S, Benali H (2011) Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55(3):1024–1033PubMedCrossRef
105.
go back to reference El Mendili MM, Chen R, Tiret B, Pelegrini-Issac M, Cohen-Adad J, Lehericy S, Pradat PF, Benali H (2014) Validation of a semiautomated spinal cord segmentation method. J Magn Reson Imaging 41(2):454–459PubMedCrossRef El Mendili MM, Chen R, Tiret B, Pelegrini-Issac M, Cohen-Adad J, Lehericy S, Pradat PF, Benali H (2014) Validation of a semiautomated spinal cord segmentation method. J Magn Reson Imaging 41(2):454–459PubMedCrossRef
106.
go back to reference Rossignol S, Martinez M, Escalona M, Kundu A, Delivet-Mongrain H, Alluin O, Gossard JP (2015) The “beneficial” effects of locomotor training after various types of spinal lesions in cats and rats. Prog Brain Res 218:173–198PubMedCrossRef Rossignol S, Martinez M, Escalona M, Kundu A, Delivet-Mongrain H, Alluin O, Gossard JP (2015) The “beneficial” effects of locomotor training after various types of spinal lesions in cats and rats. Prog Brain Res 218:173–198PubMedCrossRef
107.
go back to reference Cadotte DW, Fehlings MG (2014) Traumatic spinal cord injury: acute spinal cord injury and prognosis. In: Cohen-Adad J, Wheeler-Kingshott C (eds) Quantitative MRI of the spinal cord. Elsevier, London, pp 39–48CrossRef Cadotte DW, Fehlings MG (2014) Traumatic spinal cord injury: acute spinal cord injury and prognosis. In: Cohen-Adad J, Wheeler-Kingshott C (eds) Quantitative MRI of the spinal cord. Elsevier, London, pp 39–48CrossRef
108.
go back to reference Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG (2007) Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients 1. Radiology 243(3):820–827PubMedCrossRef Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG (2007) Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients 1. Radiology 243(3):820–827PubMedCrossRef
109.
go back to reference Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef
110.
go back to reference Cruz-Sanchez FF, Moral A, Tolosa E, de Belleroche J, Rossi ML (1998) Evaluation of neuronal loss, astrocytosis and abnormalities of cytoskeletal components of large motor neurons in the human anterior horn in aging. J Neural Transm 105(6–7):689–701PubMedCrossRef Cruz-Sanchez FF, Moral A, Tolosa E, de Belleroche J, Rossi ML (1998) Evaluation of neuronal loss, astrocytosis and abnormalities of cytoskeletal components of large motor neurons in the human anterior horn in aging. J Neural Transm 105(6–7):689–701PubMedCrossRef
111.
go back to reference Valsasina P, Horsfield MA, Rocca MA, Absinta M, Comi G, Filippi M (2012) Spatial normalization and regional assessment of cord atrophy: voxel-based analysis of cervical cord 3D T1-weighted images. AJNR Am J Neuroradiol 33(11):2195–2200PubMedCrossRef Valsasina P, Horsfield MA, Rocca MA, Absinta M, Comi G, Filippi M (2012) Spatial normalization and regional assessment of cord atrophy: voxel-based analysis of cervical cord 3D T1-weighted images. AJNR Am J Neuroradiol 33(11):2195–2200PubMedCrossRef
112.
go back to reference Agosta F, Lagana M, Valsasina P, Sala S, Dall’Occhio L, Sormani MP, Judica E, Filippi M (2007) Evidence for cervical cord tissue disorganisation with aging by diffusion tensor MRI. Neuroimage 36(3):728–735PubMedCrossRef Agosta F, Lagana M, Valsasina P, Sala S, Dall’Occhio L, Sormani MP, Judica E, Filippi M (2007) Evidence for cervical cord tissue disorganisation with aging by diffusion tensor MRI. Neuroimage 36(3):728–735PubMedCrossRef
113.
go back to reference MacMillan EL, Madler B, Fichtner N, Dvorak MF, Li DK, Curt A, MacKay AL (2011) Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age. Neuroimage 54(2):1083–1090PubMedCrossRef MacMillan EL, Madler B, Fichtner N, Dvorak MF, Li DK, Curt A, MacKay AL (2011) Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age. Neuroimage 54(2):1083–1090PubMedCrossRef
114.
go back to reference Abdel-Aziz K, Solanky BS, Yiannakas MC, Altmann DR, Wheeler-Kingshott CA, Thompson AJ, Ciccarelli O (2014) Age related changes in metabolite concentrations in the normal spinal cord. PLoS One 9(10):e105774PubMedPubMedCentralCrossRef Abdel-Aziz K, Solanky BS, Yiannakas MC, Altmann DR, Wheeler-Kingshott CA, Thompson AJ, Ciccarelli O (2014) Age related changes in metabolite concentrations in the normal spinal cord. PLoS One 9(10):e105774PubMedPubMedCentralCrossRef
115.
go back to reference Varma G, Duhamel G, de Bazelaire C, Alsop DC (2015) Magnetization transfer from inhomogeneously broadened lines: a potential marker for myelin. Magn Reson Med 73(2):614–622PubMedPubMedCentralCrossRef Varma G, Duhamel G, de Bazelaire C, Alsop DC (2015) Magnetization transfer from inhomogeneously broadened lines: a potential marker for myelin. Magn Reson Med 73(2):614–622PubMedPubMedCentralCrossRef
117.
go back to reference Lucas BC, Bogovic JA, Carass A, Bazin P-L, Prince JL, Pham DL, Landman BA (2010) The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 8(1):5–17PubMedPubMedCentralCrossRef Lucas BC, Bogovic JA, Carass A, Bazin P-L, Prince JL, Pham DL, Landman BA (2010) The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 8(1):5–17PubMedPubMedCentralCrossRef
118.
go back to reference Sdika M, Callot V, Hebert M, Duhamel G, Cozzone PJ (2010) Segmentation of the structure of the mouse spinal cord on DTI images. In: Proceedings of the 19th scientific meeting, international society for magnetic resonance in medicine, ISMRM, Stockholm, p 5092 Sdika M, Callot V, Hebert M, Duhamel G, Cozzone PJ (2010) Segmentation of the structure of the mouse spinal cord on DTI images. In: Proceedings of the 19th scientific meeting, international society for magnetic resonance in medicine, ISMRM, Stockholm, p 5092
119.
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57PubMedCrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57PubMedCrossRef
120.
go back to reference Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A (2010) Automatic segmentation of spinal cord MRI using symmetric boundary tracing. IEEE Trans Inf Technol Biomed 14(5):1275–1278PubMedPubMedCentralCrossRef Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A (2010) Automatic segmentation of spinal cord MRI using symmetric boundary tracing. IEEE Trans Inf Technol Biomed 14(5):1275–1278PubMedPubMedCentralCrossRef
121.
go back to reference Archip N, Erard P-J, Egmont-Petersen M, Haefliger J-M, Germond J-F (2002) A knowledge-based approach to automatic detection of the spinal cord in CT images. IEEE Trans Med Imaging 21(12):1504–1516PubMedCrossRef Archip N, Erard P-J, Egmont-Petersen M, Haefliger J-M, Germond J-F (2002) A knowledge-based approach to automatic detection of the spinal cord in CT images. IEEE Trans Med Imaging 21(12):1504–1516PubMedCrossRef
122.
go back to reference Cadotte DW, Cadotte A, Cohen-Adad J, Fleet D, Livne M, Wilson JR, Mikulis D, Nugaeva N, Fehlings MG (2015) Characterizing the location of spinal and vertebral levels in the human cervical spinal cord. AJNR Am J Neuroradiol 36(4):803–810PubMedCrossRef Cadotte DW, Cadotte A, Cohen-Adad J, Fleet D, Livne M, Wilson JR, Mikulis D, Nugaeva N, Fehlings MG (2015) Characterizing the location of spinal and vertebral levels in the human cervical spinal cord. AJNR Am J Neuroradiol 36(4):803–810PubMedCrossRef
123.
go back to reference Altman J, Bayer SA (eds) (2001) An overview of spinal cord organization. In: Development of the human spinal cord: an interpretation based on experimental studies in animals. Oxford University Press, New York, pp 1–87 Altman J, Bayer SA (eds) (2001) An overview of spinal cord organization. In: Development of the human spinal cord: an interpretation based on experimental studies in animals. Oxford University Press, New York, pp 1–87
Metadata
Title
Segmentation of the human spinal cord
Authors
Benjamin De Leener
Manuel Taso
Julien Cohen-Adad
Virginie Callot
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0507-2

Other articles of this Issue 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Go to the issue