Skip to main content
Top
Published in: Journal of Digital Imaging 5/2019

01-10-2019

A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images

Authors: Ruba Alkadi, Fatma Taher, Ayman El-baz, Naoufel Werghi

Published in: Journal of Imaging Informatics in Medicine | Issue 5/2019

Login to get access

Abstract

We address the problem of prostate lesion detection, localization, and segmentation in T2W magnetic resonance (MR) images. We train a deep convolutional encoder-decoder architecture to simultaneously segment the prostate, its anatomical structure, and the malignant lesions. To incorporate the 3D contextual spatial information provided by the MRI series, we propose a novel 3D sliding window approach, which preserves the 2D domain complexity while exploiting 3D information. Experiments on data from 19 patients provided for the public by the Initiative for Collaborative Computer Vision Benchmarking (I2CVB) show that our approach outperforms traditional pattern recognition and machine learning approaches by a significant margin. Particularly, for the task of cancer detection and localization, the system achieves an average AUC of 0.995, an accuracy of 0.894, and a recall of 0.928. The proposed mono-modal deep learning-based system performs comparably to other multi-modal MR-based systems. It could improve the performance of a radiologist in prostate cancer diagnosis and treatment planning.
Literature
1.
go back to reference Alkadi R, Taher F, El-Baz A, Naoufel W: Early diagnosis and staging of prostate cancer using magnetic resonance imaging: State of the art and perspectives. In: Prostate cancer imaging: An engineering and clinical perspective, chapter 2. Taylor & Francis, In-press Alkadi R, Taher F, El-Baz A, Naoufel W: Early diagnosis and staging of prostate cancer using magnetic resonance imaging: State of the art and perspectives. In: Prostate cancer imaging: An engineering and clinical perspective, chapter 2. Taylor & Francis, In-press
2.
go back to reference Badrinarayanan V, Kendall A, Cipolla R: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39 (12): 2481–2495, 2017CrossRefPubMed Badrinarayanan V, Kendall A, Cipolla R: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39 (12): 2481–2495, 2017CrossRefPubMed
3.
go back to reference Chan I, Wells W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany C: Detection of prostate cancer by integration of line-scan diffusion, t2-mapping and t2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys 30 (9): 2390–2398, 2003CrossRefPubMed Chan I, Wells W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany C: Detection of prostate cancer by integration of line-scan diffusion, t2-mapping and t2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys 30 (9): 2390–2398, 2003CrossRefPubMed
4.
go back to reference Chawla NV, Bowyer KW, Hall LO, Philip Kegelmeyer W: Smote: synthetic minority over-sampling technique. J Artif Intell Res 16: 321–357, 2002CrossRef Chawla NV, Bowyer KW, Hall LO, Philip Kegelmeyer W: Smote: synthetic minority over-sampling technique. J Artif Intell Res 16: 321–357, 2002CrossRef
5.
go back to reference Csurka G, Larlus D, Perronnin F, Meylan F: What is a good evaluation measure for semantic segmentation?. In: BMVC, volume 27, p 2013. Citeseer, 2013 Csurka G, Larlus D, Perronnin F, Meylan F: What is a good evaluation measure for semantic segmentation?. In: BMVC, volume 27, p 2013. Citeseer, 2013
6.
go back to reference Drozdzal M, Chartrand G, Vorontsov E, Shakeri M, Di Jorio L, An T, Romero A, Bengio Y, Pal C, Kadoury S: Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 44: 1–13, 2018CrossRefPubMed Drozdzal M, Chartrand G, Vorontsov E, Shakeri M, Di Jorio L, An T, Romero A, Bengio Y, Pal C, Kadoury S: Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 44: 1–13, 2018CrossRefPubMed
7.
go back to reference Eigen D, Fergus R: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.. In: Proceedings of the IEEE international conference on computer vision, 2015, pp 2650–2658 Eigen D, Fergus R: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.. In: Proceedings of the IEEE international conference on computer vision, 2015, pp 2650–2658
8.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int J Cancer 136 (5): E359–86, 2015CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int J Cancer 136 (5): E359–86, 2015CrossRefPubMed
10.
go back to reference Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J: A review on deep learning techniques applied to semantic segmentation, 2017. arXiv:1704.06857 Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J: A review on deep learning techniques applied to semantic segmentation, 2017. arXiv:1704.​06857
11.
go back to reference Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35 (5): 1153–1159, 2016CrossRef Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35 (5): 1153–1159, 2016CrossRef
12.
go back to reference Guo Y, Gao Y, Shen D: Deformable mr prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans Med Imaging 35 (4): 1077–1089, 2016CrossRefPubMed Guo Y, Gao Y, Shen D: Deformable mr prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans Med Imaging 35 (4): 1077–1089, 2016CrossRefPubMed
13.
go back to reference Hall MA: Correlation-based feature selection of discrete and numeric class machine learning, 2000 Hall MA: Correlation-based feature selection of discrete and numeric class machine learning, 2000
14.
go back to reference Han H, Wang W-Y, Mao B-H: Borderline-smote: a new over- sampling method in imbalanced data sets learning.. In: International Conference on Intelligent Computing, pp 878–887. Springer , 2005 Han H, Wang W-Y, Mao B-H: Borderline-smote: a new over- sampling method in imbalanced data sets learning.. In: International Conference on Intelligent Computing, pp 878–887. Springer , 2005
15.
go back to reference He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034, 2015 He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034, 2015
16.
go back to reference Kiraly AP, Nader CA, Tuysuzoglu A, Grimm R, Kiefer B, El-Zehiry N, Kamen A: Deep convolutional encoder-decoders for prostate cancer detection and classification.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 489–497. Springer, 2017 Kiraly AP, Nader CA, Tuysuzoglu A, Grimm R, Kiefer B, El-Zehiry N, Kamen A: Deep convolutional encoder-decoders for prostate cancer detection and classification.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 489–497. Springer, 2017
17.
go back to reference Kohl S, Bonekamp D, Schlemmer H-P, Yaqubi K, Hohenfellner M, Hadaschik B, Radtke J-P, Maier-Hein K: Adversarial networks for the detection of aggressive prostate cancer, 2017. arXiv:1702.08014 1702.08014 Kohl S, Bonekamp D, Schlemmer H-P, Yaqubi K, Hohenfellner M, Hadaschik B, Radtke J-P, Maier-Hein K: Adversarial networks for the detection of aggressive prostate cancer, 2017. arXiv:1702.​08014 1702.​08014
18.
go back to reference Kumar D, Wong A, Clausi DA: Lung nodule classification using deep features in ct images.. In: 2015 12th conference on computer and robot vision (CRV), pp 133–138. IEEE, 2015 Kumar D, Wong A, Clausi DA: Lung nodule classification using deep features in ct images.. In: 2015 12th conference on computer and robot vision (CRV), pp 133–138. IEEE, 2015
19.
go back to reference Lemaitre G: Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging. PhD thesis, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne, 2016 Lemaitre G: Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging. PhD thesis, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne, 2016
20.
go back to reference Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review. Comput Biol Med 60: 8–31, 2015CrossRefPubMed Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review. Comput Biol Med 60: 8–31, 2015CrossRefPubMed
21.
go back to reference Lemaitre G, Martí R, Rastgoo M, Mériaudeau F: Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging.. In: Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, pp 3138–3141. IEEE, 2017 Lemaitre G, Martí R, Rastgoo M, Mériaudeau F: Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging.. In: Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, pp 3138–3141. IEEE, 2017
22.
go back to reference Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H: Computer-aided detection of prostate cancer in mri. IEEE Trans Med Imaging 33 (5): 1083–1092, 2014CrossRefPubMed Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H: Computer-aided detection of prostate cancer in mri. IEEE Trans Med Imaging 33 (5): 1083–1092, 2014CrossRefPubMed
23.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42: 60–88, 2017CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42: 60–88, 2017CrossRefPubMed
24.
go back to reference Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 3431–3440 Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 3431–3440
25.
go back to reference Lv D, Guo X, Wang X, Zhang J, Fang J: Computerized characterization of prostate cancer by fractal analysis in mr images. J Magn Reson Imaging 30 (1): 161–168, 2009CrossRefPubMed Lv D, Guo X, Wang X, Zhang J, Fang J: Computerized characterization of prostate cancer by fractal analysis in mr images. J Magn Reson Imaging 30 (1): 161–168, 2009CrossRefPubMed
26.
go back to reference Mani I, Zhang I: knn approach to unbalanced data distributions: a case study involving information extraction.. In: Proceedings of workshop on learning from imbalanced datasets, vol 126, 2003 Mani I, Zhang I: knn approach to unbalanced data distributions: a case study involving information extraction.. In: Proceedings of workshop on learning from imbalanced datasets, vol 126, 2003
27.
go back to reference Mazurowski MA, Buda M, Saha A, Bashir MR: Deep learning in radiology: an overview of the concepts and a survey of the state of the art, 2018. arXiv:1802.08717 Mazurowski MA, Buda M, Saha A, Bashir MR: Deep learning in radiology: an overview of the concepts and a survey of the state of the art, 2018. arXiv:1802.​08717
28.
go back to reference Puech P, Betrouni N, Makni N, Dewalle A-S, Villers A, Lemaitre L: Computer-assisted diagnosis of prostate cancer using dce-mri data: design, implementation and preliminary results. Int J Comput. Assist Radiol Surg 4 (1): 1–10, 2009CrossRefPubMed Puech P, Betrouni N, Makni N, Dewalle A-S, Villers A, Lemaitre L: Computer-assisted diagnosis of prostate cancer using dce-mri data: design, implementation and preliminary results. Int J Comput. Assist Radiol Surg 4 (1): 1–10, 2009CrossRefPubMed
29.
go back to reference Qi CR, Hao SU, Nießner M, Dai A, Yan M, Guibas LJ: Volumetric and multi-view cnns for object classification on 3d data.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 5648–5656 Qi CR, Hao SU, Nießner M, Dai A, Yan M, Guibas LJ: Volumetric and multi-view cnns for object classification on 3d data.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 5648–5656
30.
go back to reference Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R: Computer-aided detection of prostate cancer in t2-weighted mri within the peripheral zone. Phys Med Biol 61 (13): 4796, 2016CrossRefPubMed Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R: Computer-aided detection of prostate cancer in t2-weighted mri within the peripheral zone. Phys Med Biol 61 (13): 4796, 2016CrossRefPubMed
31.
go back to reference Reda I, Shalaby A, Khalifa F, Elmogy M, Aboulfotouh A, El-Ghar MA, Hosseini-Asl E, Werghi N, Keynton R, El-Baz A: Computer-aided diagnostic tool for early detection of prostate cancer.. In: IEEE international conference on image processing (ICIP), pp 2668–2672. IEEE, 2016 Reda I, Shalaby A, Khalifa F, Elmogy M, Aboulfotouh A, El-Ghar MA, Hosseini-Asl E, Werghi N, Keynton R, El-Baz A: Computer-aided diagnostic tool for early detection of prostate cancer.. In: IEEE international conference on image processing (ICIP), pp 2668–2672. IEEE, 2016
32.
go back to reference Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation.. In: International Conference on Medical image computing and computer-assisted intervention, pp 234–241. Springer, 2015 Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation.. In: International Conference on Medical image computing and computer-assisted intervention, pp 234–241. Springer, 2015
33.
go back to reference Roth HR, Lu Le, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35 (5): 1170–1181, 2016CrossRefPubMed Roth HR, Lu Le, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35 (5): 1170–1181, 2016CrossRefPubMed
34.
go back to reference Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, Liu J, Turkbey E, Summers RM: A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 520–527. Springer, 2014 Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, Liu J, Turkbey E, Summers RM: A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 520–527. Springer, 2014
35.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L: ImageNet large scale visual recognition challenge. Int J Comput Vis 115 (3): 211–252, 2015CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L: ImageNet large scale visual recognition challenge. Int J Comput Vis 115 (3): 211–252, 2015CrossRef
36.
go back to reference Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition, 2014. arXiv:1409.1556 Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition, 2014. arXiv:1409.​1556
37.
go back to reference Smith MR, Martinez T, Giraud-Carrier C: An instance level analysis of data complexity. Mach Learn 95 (2): 225–256, 2014CrossRef Smith MR, Martinez T, Giraud-Carrier C: An instance level analysis of data complexity. Mach Learn 95 (2): 225–256, 2014CrossRef
38.
go back to reference Tiwari P, Kurhanewicz J, Madabhushi A: Multi-kernel graph embedding for detection, gleason grading of prostate cancer via mri/mrs. Med Image Anal 17 (2): 219–235, 2013CrossRefPubMed Tiwari P, Kurhanewicz J, Madabhushi A: Multi-kernel graph embedding for detection, gleason grading of prostate cancer via mri/mrs. Med Image Anal 17 (2): 219–235, 2013CrossRefPubMed
39.
go back to reference Tiwari P, Rosen M, Madabhushi A: A hierarchical spectral clustering and nonlinear dimensionality reduction scheme for detection of prostate cancer from magnetic resonance spectroscopy (mrs). Med Phys 36 (9Part1): 3927–3939, 2009CrossRefPubMedPubMedCentral Tiwari P, Rosen M, Madabhushi A: A hierarchical spectral clustering and nonlinear dimensionality reduction scheme for detection of prostate cancer from magnetic resonance spectroscopy (mrs). Med Phys 36 (9Part1): 3927–3939, 2009CrossRefPubMedPubMedCentral
40.
go back to reference Tiwari P, Viswanath S, Kurhanewicz J, Sridhar A, Madabhushi A: Multimodal wavelet embedding representation for data combination (maweric): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR Biomed 25 (4): 607–619, 2012CrossRefPubMed Tiwari P, Viswanath S, Kurhanewicz J, Sridhar A, Madabhushi A: Multimodal wavelet embedding representation for data combination (maweric): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR Biomed 25 (4): 607–619, 2012CrossRefPubMed
41.
go back to reference Trigui R, Mitéran J, Walker PM, Sellami L, Ben Hamida A: Automatic classification and localization of prostate cancer using multi-parametric mri/mrs. Biomed Signal Process Control 31: 189–198, 2017CrossRef Trigui R, Mitéran J, Walker PM, Sellami L, Ben Hamida A: Automatic classification and localization of prostate cancer using multi-parametric mri/mrs. Biomed Signal Process Control 31: 189–198, 2017CrossRef
42.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4itk: Improved n3 bias correction. IEEE Trans Med Imaging 29 (6): 1310–1320, 2010CrossRefPubMedPubMedCentral Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4itk: Improved n3 bias correction. IEEE Trans Med Imaging 29 (6): 1310–1320, 2010CrossRefPubMedPubMedCentral
43.
go back to reference Viswanath S, Bloch BN, Genega E, Rofsky N, Lenkinski R, Chappelow J, Toth R, Madabhushi A: A comprehensive segmentation, registration, and cancer detection scheme on 3 tesla in vivo prostate dce-mri.. In: International conference on medical image computing and computer-assisted intervention, pp 662–669. Springer, 2008 Viswanath S, Bloch BN, Genega E, Rofsky N, Lenkinski R, Chappelow J, Toth R, Madabhushi A: A comprehensive segmentation, registration, and cancer detection scheme on 3 tesla in vivo prostate dce-mri.. In: International conference on medical image computing and computer-assisted intervention, pp 662–669. Springer, 2008
44.
go back to reference Viswanath SE, Bloch NB, Chappelow JC, Toth R, Rofsky NM, Genega EM, Lenkinski RE, Madabhushi A: Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo t2- weighted mr imagery. J Magn Reson Imaging 36 (1): 213–224, 2012CrossRefPubMedPubMedCentral Viswanath SE, Bloch NB, Chappelow JC, Toth R, Rofsky NM, Genega EM, Lenkinski RE, Madabhushi A: Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo t2- weighted mr imagery. J Magn Reson Imaging 36 (1): 213–224, 2012CrossRefPubMedPubMedCentral
45.
go back to reference Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys Med Biol 57 (6): 1527, 2012CrossRefPubMed Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys Med Biol 57 (6): 1527, 2012CrossRefPubMed
46.
go back to reference Wang L, Zwiggelaar R: 3d texton based prostate cancer detection using multiparametric magnetic resonance imaging.. In: Annual conference on medical image understanding and analysis, pp 309– 319. Springer, 2017 Wang L, Zwiggelaar R: 3d texton based prostate cancer detection using multiparametric magnetic resonance imaging.. In: Annual conference on medical image understanding and analysis, pp 309– 319. Springer, 2017
47.
go back to reference Wang Z, Liu C, Cheng D, Wanga L, Yang X, Chengb K-TT: Automated detection of clinically significant prostate cancer in mp-mri images based on an end-to-end deep neural network. IEEE Transactions on Medical Imaging, 2018 Wang Z, Liu C, Cheng D, Wanga L, Yang X, Chengb K-TT: Automated detection of clinically significant prostate cancer in mp-mri images based on an end-to-end deep neural network. IEEE Transactions on Medical Imaging, 2018
48.
go back to reference Zhirong WU, Song S, Khosla A, Fisher YU, Zhang L, Tang X, Xiao J: 3d shapenets; A deep representation for volumetric shapes.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 1912–1920 Zhirong WU, Song S, Khosla A, Fisher YU, Zhang L, Tang X, Xiao J: 3d shapenets; A deep representation for volumetric shapes.. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 1912–1920
49.
go back to reference Yang X, Liu C, Wang Z, Yang J, Min HL, Wang L, Cheng K-TT: Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric mri. Med Image Anal 42: 212–227, 2017CrossRefPubMed Yang X, Liu C, Wang Z, Yang J, Min HL, Wang L, Cheng K-TT: Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric mri. Med Image Anal 42: 212–227, 2017CrossRefPubMed
50.
go back to reference Yang X, Wang Z, Liu C, Le HM, Chen J, Cheng K-TT, Wang L: Joint detection and diagnosis of prostate cancer in multi-parametric mri based on multimodal convolutional neural networks.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 426–434. Springer, 2017 Yang X, Wang Z, Liu C, Le HM, Chen J, Cheng K-TT, Wang L: Joint detection and diagnosis of prostate cancer in multi-parametric mri based on multimodal convolutional neural networks.. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 426–434. Springer, 2017
51.
go back to reference Lequan YU, Yang X, Chen H, Qin J, Heng P-A: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images.. In: AAAI, 2017, pp 66–72 Lequan YU, Yang X, Chen H, Qin J, Heng P-A: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images.. In: AAAI, 2017, pp 66–72
52.
go back to reference Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization.. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2921–2929. IEEE, 2016 Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization.. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2921–2929. IEEE, 2016
Metadata
Title
A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images
Authors
Ruba Alkadi
Fatma Taher
Ayman El-baz
Naoufel Werghi
Publication date
01-10-2019
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 5/2019
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0160-1

Other articles of this Issue 5/2019

Journal of Digital Imaging 5/2019 Go to the issue