Skip to main content
Top
Published in: Journal of Digital Imaging 2/2019

01-04-2019

Suspicious Lesion Segmentation on Brain, Mammograms and Breast MR Images Using New Optimized Spatial Feature Based Super-Pixel Fuzzy C-Means Clustering

Authors: S. N. Kumar, A. Lenin Fred, P. Sebastin Varghese

Published in: Journal of Imaging Informatics in Medicine | Issue 2/2019

Login to get access

Abstract

Suspicious lesion or organ segmentation is a challenging task to be solved in most of the medical image analyses, medical diagnoses and computer diagnosis systems. Nevertheless, various image segmentation methods were proposed in the previous studies with varying success levels. But, the image segmentation problems such as lack of versatility, low robustness, high complexity and low accuracy in up-to-date image segmentation practices still remain unsolved. Fuzzy c-means clustering (FCM) methods are very well suited for segmenting the regions. The noise-free images are effectively segmented using the traditional FCM method. However, the segmentation result generated is highly sensitive to noise due to the negligence of spatial information. To solve this issue, super-pixel-based FCM (SPOFCM) is implemented in this paper, in which the influence of spatially neighbouring and similar super-pixels is incorporated. Also, a crow search algorithm is adopted for optimizing the influential degree; thereby, the segmentation performance is improved. In clinical applications, the SPOFCM feasibility is verified using the multi-spectral MRIs, mammograms and actual single spectrum on performing tumour segmentation tests for SPOFCM. Ultimately, the competitive, renowned segmentation techniques such as k-means, entropy thresholding (ET), FCM, FCM with spatial constraints (FCM_S) and kernel FCM (KFCM) are used to compare the results of proposed SPOFCM. Experimental results on multi-spectral MRIs and actual single-spectrum mammograms indicate that the proposed algorithm can provide a better performance for suspicious lesion or organ segmentation in computer-assisted clinical applications.
Literature
1.
go back to reference Li C, Gore JC, Davatzikos C: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923, 2014CrossRefPubMedPubMedCentral Li C, Gore JC, Davatzikos C: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923, 2014CrossRefPubMedPubMedCentral
2.
go back to reference Wang ZM, Soh YC, Song Q, Sim K: Adaptive spatial information-theoretic clustering for image segmentation. Pattern Recogn 42(9):2029–2044, 2009CrossRef Wang ZM, Soh YC, Song Q, Sim K: Adaptive spatial information-theoretic clustering for image segmentation. Pattern Recogn 42(9):2029–2044, 2009CrossRef
3.
go back to reference Tou JT, Gonzalez RC: Pattern recognition. Reading: Addison-Wesley, 1974 Tou JT, Gonzalez RC: Pattern recognition. Reading: Addison-Wesley, 1974
4.
go back to reference Modha DS, Spangler WS: Feature weighting in k-means clustering. Mach Learn 52(3):217–237, 2003CrossRef Modha DS, Spangler WS: Feature weighting in k-means clustering. Mach Learn 52(3):217–237, 2003CrossRef
5.
go back to reference Bezdek JC, Ehrlich R, Full W: FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203, 1984CrossRef Bezdek JC, Ehrlich R, Full W: FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203, 1984CrossRef
6.
go back to reference Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–682, 1992CrossRefPubMed Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–682, 1992CrossRefPubMed
7.
go back to reference Krinidis S, Chatzis V: A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337, 2010CrossRefPubMed Krinidis S, Chatzis V: A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337, 2010CrossRefPubMed
8.
go back to reference Cai W, Chen S, Zhang D: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838, 2007CrossRef Cai W, Chen S, Zhang D: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838, 2007CrossRef
9.
go back to reference Chuang K-S, Tzeng H-L, Chen S, Wu J, Chen T-J: Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15, 2006CrossRefPubMed Chuang K-S, Tzeng H-L, Chen S, Wu J, Chen T-J: Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15, 2006CrossRefPubMed
10.
go back to reference Pal NR, Pal K, Keller JM, Bezdek JC: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530, 2005CrossRef Pal NR, Pal K, Keller JM, Bezdek JC: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530, 2005CrossRef
11.
go back to reference Yang X, Zhang G, Lu J, Ma J: A kernel fuzzy c-means clustering-based fuzzy support vector machine method for classification problems with outliers or noises. IEEE Trans Fuzzy Syst 19(1):105–115, 2011CrossRef Yang X, Zhang G, Lu J, Ma J: A kernel fuzzy c-means clustering-based fuzzy support vector machine method for classification problems with outliers or noises. IEEE Trans Fuzzy Syst 19(1):105–115, 2011CrossRef
12.
go back to reference Le Capitaine H, Frelicot C: A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators. IEEE Trans Fuzzy Syst 19(3):580–588, 2011CrossRef Le Capitaine H, Frelicot C: A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators. IEEE Trans Fuzzy Syst 19(3):580–588, 2011CrossRef
13.
go back to reference Gong M, Zhou Z, Ma J: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151, 2012CrossRefPubMed Gong M, Zhou Z, Ma J: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151, 2012CrossRefPubMed
14.
go back to reference Huang HC, Chuang YY, Chen CS: Multiple kernel fuzzy clustering. IEEE Trans Fuzzy Syst 20(1):120–134, 2012CrossRef Huang HC, Chuang YY, Chen CS: Multiple kernel fuzzy clustering. IEEE Trans Fuzzy Syst 20(1):120–134, 2012CrossRef
15.
go back to reference Balla-Arabe S, Gao X, Wang B: A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920, 2013CrossRefPubMed Balla-Arabe S, Gao X, Wang B: A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920, 2013CrossRefPubMed
16.
go back to reference Despotovic I, Vansteenkiste E, Philips W: Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation. IEEE Signal Process Lett 20(4):295–298, 2013CrossRef Despotovic I, Vansteenkiste E, Philips W: Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation. IEEE Signal Process Lett 20(4):295–298, 2013CrossRef
17.
go back to reference Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T: A modified fuzzy c-means method for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199, 2002CrossRefPubMed Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T: A modified fuzzy c-means method for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199, 2002CrossRefPubMed
18.
go back to reference Li X, Li L, Lu H, Chen D, Liang Z: In homogeneity correction for magnetic resonance images with fuzzy c-mean method. Proc SPIE Int Soc Opt Eng 5032:995–1005, 2003 Li X, Li L, Lu H, Chen D, Liang Z: In homogeneity correction for magnetic resonance images with fuzzy c-mean method. Proc SPIE Int Soc Opt Eng 5032:995–1005, 2003
19.
go back to reference Ng EKK, Fu AW-C, Wong RC-W: Projective clustering by histograms. IEEE Trans Knowl Data Eng 17(3):369–383, 2005CrossRef Ng EKK, Fu AW-C, Wong RC-W: Projective clustering by histograms. IEEE Trans Knowl Data Eng 17(3):369–383, 2005CrossRef
20.
go back to reference Li B, Chen W, Wang D: An improved FCM method incorporating spatial information for image segmentation. In: Proc of International Symposium on Computer Science and Computational Technology, 2008, pp 493–495 Li B, Chen W, Wang D: An improved FCM method incorporating spatial information for image segmentation. In: Proc of International Symposium on Computer Science and Computational Technology, 2008, pp 493–495
21.
go back to reference Chen S, Zhang D: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B 34(4):1907–1916, 2004CrossRef Chen S, Zhang D: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B 34(4):1907–1916, 2004CrossRef
22.
go back to reference Kannan SR, Ramathilagam S, Devi R, Sathya A: Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 38(4):4382–4389, 2011CrossRef Kannan SR, Ramathilagam S, Devi R, Sathya A: Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 38(4):4382–4389, 2011CrossRef
23.
go back to reference Liapis S, Sifakis E, Tziritas G: Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching methods. J Vis Commun Image Represent 15:1–26, 2004CrossRef Liapis S, Sifakis E, Tziritas G: Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching methods. J Vis Commun Image Represent 15:1–26, 2004CrossRef
24.
go back to reference Yu H, Zhang X, Wang S, Hou B: Context-based hierarchical unequal merging for SAR image segmentation. IEEE Trans Geosci Remote Sens 51(2):995–1009, 2013CrossRef Yu H, Zhang X, Wang S, Hou B: Context-based hierarchical unequal merging for SAR image segmentation. IEEE Trans Geosci Remote Sens 51(2):995–1009, 2013CrossRef
25.
go back to reference Sundararaj V, Muthukumar S, Kumar RS: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Comput Secur 77:277–288, 2018 Sundararaj V, Muthukumar S, Kumar RS: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Comput Secur 77:277–288, 2018
27.
go back to reference Sundararaj V: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Int J Intell Eng Syst 9(3):117–126, 2016 Sundararaj V: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Int J Intell Eng Syst 9(3):117–126, 2016
28.
go back to reference Achanta R, Shaji A, Smith K, Lucchi A, Fua P: Sabine, SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282, 2012CrossRefPubMed Achanta R, Shaji A, Smith K, Lucchi A, Fua P: Sabine, SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282, 2012CrossRefPubMed
29.
go back to reference Shotton J, Johnson M, Cipolla R: Semantic texton forests for image categorization and segmentation. In: European Conference on Computer Vision, 2008, pp 1–8 Shotton J, Johnson M, Cipolla R: Semantic texton forests for image categorization and segmentation. In: European Conference on Computer Vision, 2008, pp 1–8
30.
go back to reference Madhulatha TS: An Overview on Clustering Methods. IOSR J Eng 2(4):719–725, 2012CrossRef Madhulatha TS: An Overview on Clustering Methods. IOSR J Eng 2(4):719–725, 2012CrossRef
31.
go back to reference Ke J, Hall LO, Goldgof DB: Fast accurate fuzzy clustering through data reduction. IEEE Trans Fuzzy Syst 11(2):262–270, 2003CrossRef Ke J, Hall LO, Goldgof DB: Fast accurate fuzzy clustering through data reduction. IEEE Trans Fuzzy Syst 11(2):262–270, 2003CrossRef
32.
go back to reference Hemanth DJ, Selvathi D, Anitha J: Effective Fuzzy Clustering Method for Abnormal MR Brain Image Segmentation. In: IEEE International Advance Computing Conference, 2009, pp 609–614 Hemanth DJ, Selvathi D, Anitha J: Effective Fuzzy Clustering Method for Abnormal MR Brain Image Segmentation. In: IEEE International Advance Computing Conference, 2009, pp 609–614
33.
go back to reference Askarzadeh A: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12, 2016CrossRef Askarzadeh A: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12, 2016CrossRef
34.
go back to reference Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S, Taylor P: “The mammographic image analysis society digital mammogram database,” In Exerpta Medica International Congress Series, Vol. 1069, 1994, pp 375–378 Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S, Taylor P: “The mammographic image analysis society digital mammogram database,” In Exerpta Medica International Congress Series, Vol. 1069, 1994, pp 375–378
Metadata
Title
Suspicious Lesion Segmentation on Brain, Mammograms and Breast MR Images Using New Optimized Spatial Feature Based Super-Pixel Fuzzy C-Means Clustering
Authors
S. N. Kumar
A. Lenin Fred
P. Sebastin Varghese
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 2/2019
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0149-9

Other articles of this Issue 2/2019

Journal of Digital Imaging 2/2019 Go to the issue