Skip to main content
Top
Published in: Clinical and Experimental Medicine 3/2018

01-08-2018 | Original Article

The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema

Authors: Francesco Arcoleo, Mariangela Lo Pizzo, Gabriella Misiano, Salvatore Milano, Giuseppina Colonna Romano, Vito Muggeo, Enrico Cillari

Published in: Clinical and Experimental Medicine | Issue 3/2018

Login to get access

Abstract

Hereditary angioedema (HAE) is a rare autosomic-dominant disorder characterized by a deficiency of C1 esterase inhibitor which causes episodic swellings of subcutaneous tissues, bowel walls and upper airways that are disabling and potentially life-threatening. We evaluated n = 17 patients with confirmed HAE diagnosis during attack and remission state and n = 19 healthy subjects. The samples were tested for a panel of IL (Interleukin)-17-type cytokines (IL-1β, IL-6, IL-10, granulocyte–macrophage colony stimulating factor (GM-CSF), IL-17, IL-21, IL-22, IL-23) and transforming growth factor-beta (TGF-β) subtypes. Data indicate that there are variations of cytokine levels in HAE subjects comparing the condition during the crisis respect to the value in the remission phase, in particular type 17 signature cytokines are increased, whereas IL-23 is unmodified and TGF-β3 is significantly reduced. When comparing healthy and HAE subjects in the remission state, we found a significant difference for IL-17, GM-CSF, IL-21, TGF-β1 and TGF-β2 cytokines. These results confirm and extend our previous findings indicating that in HAE there is operating an inflammatory activation process, which involves also T helper 17 (Th17) cytokines and TGF-β isoforms, associated with localized angioedema attacks and characterized by elevated bradykinin levels.
Literature
1.
go back to reference Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.CrossRef Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.CrossRef
2.
3.
go back to reference Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.CrossRefPubMed Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.CrossRefPubMed
4.
go back to reference Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.CrossRefPubMed Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.CrossRefPubMed
7.
go back to reference Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.CrossRef Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.CrossRef
8.
go back to reference Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.CrossRefPubMed Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.CrossRefPubMed
9.
go back to reference Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.CrossRefPubMed Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.CrossRefPubMed
10.
go back to reference Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.CrossRefPubMed Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.CrossRefPubMed
11.
go back to reference Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.CrossRefPubMed Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.CrossRefPubMed
12.
go back to reference Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).CrossRefPubMed Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).CrossRefPubMed
13.
go back to reference Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.PubMed Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.PubMed
14.
go back to reference Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.CrossRefPubMed Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.CrossRefPubMed
15.
go back to reference Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.CrossRefPubMed Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.CrossRefPubMed
16.
go back to reference Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.CrossRefPubMed Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.CrossRefPubMed
17.
go back to reference Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.PubMed Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.PubMed
18.
go back to reference Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.CrossRefPubMed Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.CrossRefPubMed
19.
go back to reference Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.CrossRefPubMed Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.CrossRefPubMed
20.
go back to reference Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.CrossRefPubMedPubMedCentral Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMed Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMed
23.
go back to reference McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.CrossRefPubMed McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.CrossRefPubMed
24.
go back to reference Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).CrossRefPubMed Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).CrossRefPubMed
26.
go back to reference Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.CrossRef Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.CrossRef
27.
go back to reference Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMed Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMed
28.
go back to reference Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedPubMedCentral Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedPubMedCentral
29.
go back to reference Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.CrossRefPubMedPubMedCentral
30.
go back to reference Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.CrossRefPubMed Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.CrossRefPubMed
31.
go back to reference Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.CrossRefPubMed
32.
go back to reference McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.CrossRefPubMed McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.CrossRefPubMed
33.
go back to reference Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.CrossRef Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.CrossRef
34.
go back to reference McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentral McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentral
35.
36.
go back to reference Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.CrossRefPubMed Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.CrossRefPubMed
37.
go back to reference Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.CrossRefPubMedPubMedCentral Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.CrossRefPubMedPubMedCentral
38.
go back to reference Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.CrossRefPubMed Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.CrossRefPubMed
39.
go back to reference Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.CrossRefPubMed Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.CrossRefPubMed
41.
go back to reference Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.CrossRef Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.CrossRef
42.
go back to reference Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.CrossRefPubMedPubMedCentral Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.CrossRefPubMedPubMedCentral
43.
go back to reference Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.CrossRef Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.CrossRef
44.
go back to reference Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.CrossRefPubMed Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.CrossRefPubMed
45.
go back to reference Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.CrossRefPubMed Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.CrossRefPubMed
47.
go back to reference Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.CrossRefPubMedPubMedCentral Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.CrossRefPubMedPubMedCentral
Metadata
Title
The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema
Authors
Francesco Arcoleo
Mariangela Lo Pizzo
Gabriella Misiano
Salvatore Milano
Giuseppina Colonna Romano
Vito Muggeo
Enrico Cillari
Publication date
01-08-2018
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 3/2018
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-018-0499-0

Other articles of this Issue 3/2018

Clinical and Experimental Medicine 3/2018 Go to the issue