Skip to main content
Top
Published in: Clinical and Experimental Medicine 4/2017

01-11-2017 | Review Article

Current treatment options of T cell-associated immunotherapy in multiple myeloma

Published in: Clinical and Experimental Medicine | Issue 4/2017

Login to get access

Abstract

Multiple myeloma (MM) is a complex disease and is presently an incurable malignant plasma cell tumor. Although the introduction of proteasome inhibitor and the immunomodulators markedly improved the effect of myeloma therapy, most patients still suffer from relapse even with an initially effective therapy. Accumulating evidence suggests that immunotherapy is a promising option in treating MM. And T cell plays crucial role through inducing sustained immune response in vivo in the immunotherapy of tumors. In this article, we will discuss progress of several T cell-based immunotherapies with insight into how they eradicate myeloma cells and their disadvantages.
Literature
1.
go back to reference Schutt P, Brandhorst D, Stellberg W, Poser M, Ebeling P, Muller S, et al. Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006;47(8):1570–82.CrossRefPubMed Schutt P, Brandhorst D, Stellberg W, Poser M, Ebeling P, Muller S, et al. Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006;47(8):1570–82.CrossRefPubMed
2.
go back to reference Porrata LF, Litzow MR, Markovic SN. Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc. 2001;76(4):407–12.CrossRefPubMed Porrata LF, Litzow MR, Markovic SN. Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc. 2001;76(4):407–12.CrossRefPubMed
3.
go back to reference Southam CM, Brunschwig A, Levin AG, Dizon QS. Effect of leukocytes on transplantability of human cancer. Cancer. 1966;19(11):1743–53.CrossRefPubMed Southam CM, Brunschwig A, Levin AG, Dizon QS. Effect of leukocytes on transplantability of human cancer. Cancer. 1966;19(11):1743–53.CrossRefPubMed
4.
go back to reference Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981;41(11 Pt 1):4420–5.PubMed Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981;41(11 Pt 1):4420–5.PubMed
5.
go back to reference Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992;360(6401):264–5.CrossRefPubMed Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992;360(6401):264–5.CrossRefPubMed
6.
go back to reference Fujiwara H. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Pharmaceuticals (Basel, Switzerland). 2014;7(12):1049–68.CrossRef Fujiwara H. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Pharmaceuticals (Basel, Switzerland). 2014;7(12):1049–68.CrossRef
7.
go back to reference Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.CrossRefPubMed Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.CrossRefPubMed
8.
go back to reference Togawa A, Sawada S, Amano M, Oshimi K, Satoh H, Takaku H. Treatment of multiple myeloma with LAK cells plus interleukin 2 or interleukin 2 alone. [Rinsho ketsueki] Jpn J Clin Hematol. 1989;30(5):650–8. Togawa A, Sawada S, Amano M, Oshimi K, Satoh H, Takaku H. Treatment of multiple myeloma with LAK cells plus interleukin 2 or interleukin 2 alone. [Rinsho ketsueki] Jpn J Clin Hematol. 1989;30(5):650–8.
9.
go back to reference Gottlieb DJ, Prentice HG, Mehta AB, Galazka AR, Heslop HE, Hoffbrand AV, et al. Malignant plasma cells are sensitive to LAK cell lysis: pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. Br J Haematol. 1990;75(4):499–505.CrossRefPubMed Gottlieb DJ, Prentice HG, Mehta AB, Galazka AR, Heslop HE, Hoffbrand AV, et al. Malignant plasma cells are sensitive to LAK cell lysis: pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. Br J Haematol. 1990;75(4):499–505.CrossRefPubMed
10.
go back to reference Sun J, Law GP, McKallip RJ. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma. Cancer Immunol Immunother CII. 2012;61(3):323–34.CrossRefPubMed Sun J, Law GP, McKallip RJ. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma. Cancer Immunol Immunother CII. 2012;61(3):323–34.CrossRefPubMed
11.
go back to reference Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997;278(5342):1447–50.CrossRefPubMed Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997;278(5342):1447–50.CrossRefPubMed
12.
go back to reference Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity. 1995;3:87–98 (J Immunol (Baltimore, Md: 1950). 2010;185(7):3788–99).CrossRefPubMed Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity. 1995;3:87–98 (J Immunol (Baltimore, Md: 1950). 2010;185(7):3788–99).CrossRefPubMed
13.
go back to reference Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7.CrossRefPubMed Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7.CrossRefPubMed
14.
go back to reference Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–97.CrossRefPubMedPubMedCentral Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–97.CrossRefPubMedPubMedCentral
15.
go back to reference Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(5):1355–65.CrossRef Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(5):1355–65.CrossRef
16.
go back to reference Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.CrossRefPubMed Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.CrossRefPubMed
17.
go back to reference Liu C, Suksanpaisan L, Chen YW, Russell SJ, Peng KW. Enhancing cytokine-induced killer cell therapy of multiple myeloma. Exp Hematol. 2013;41(6):508–17.CrossRefPubMedPubMedCentral Liu C, Suksanpaisan L, Chen YW, Russell SJ, Peng KW. Enhancing cytokine-induced killer cell therapy of multiple myeloma. Exp Hematol. 2013;41(6):508–17.CrossRefPubMedPubMedCentral
18.
go back to reference Marten A, Ziske C, Schottker B, Renoth S, Weineck S, Buttgereit P, et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother (Hagerstown, Md: 1997). 2001;24(6):502–10.CrossRef Marten A, Ziske C, Schottker B, Renoth S, Weineck S, Buttgereit P, et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother (Hagerstown, Md: 1997). 2001;24(6):502–10.CrossRef
19.
go back to reference Zhao X, Ji CY, Liu GQ, Ma DX, Ding HF, Xu M, et al. Immunomodulatory effect of DC/CIK combined with chemotherapy in multiple myeloma and the clinical efficacy. Int J Clin Exp Pathol. 2015;8(10):13146–55.PubMedPubMedCentral Zhao X, Ji CY, Liu GQ, Ma DX, Ding HF, Xu M, et al. Immunomodulatory effect of DC/CIK combined with chemotherapy in multiple myeloma and the clinical efficacy. Int J Clin Exp Pathol. 2015;8(10):13146–55.PubMedPubMedCentral
20.
go back to reference Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.CrossRefPubMed Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.CrossRefPubMed
21.
go back to reference Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(24):6122–31.CrossRef Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(24):6122–31.CrossRef
22.
go back to reference Noonan KA, Borrello IM. Marrow infiltrating lymphocytes: their role in adoptive immunotherapy. Cancer J (Sudbury, Mass). 2015;21(6):501–5.CrossRef Noonan KA, Borrello IM. Marrow infiltrating lymphocytes: their role in adoptive immunotherapy. Cancer J (Sudbury, Mass). 2015;21(6):501–5.CrossRef
23.
go back to reference Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med. 2015;7(288):288ra78.CrossRefPubMedPubMedCentral Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med. 2015;7(288):288ra78.CrossRefPubMedPubMedCentral
24.
go back to reference Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood. 2002;99(9):3280–5.CrossRefPubMed Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood. 2002;99(9):3280–5.CrossRefPubMed
25.
go back to reference Baba T, Hanagiri T, Ichiki Y, Kuroda K, Shigematsu Y, Mizukami M, et al. Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci. 2007;98(11):1795–802.CrossRefPubMed Baba T, Hanagiri T, Ichiki Y, Kuroda K, Shigematsu Y, Mizukami M, et al. Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci. 2007;98(11):1795–802.CrossRefPubMed
26.
go back to reference Li R, Qian J, Zhang W, Fu W, Du J, Jiang H, et al. Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. Br J Haematol. 2014;166(5):690–701.CrossRefPubMedPubMedCentral Li R, Qian J, Zhang W, Fu W, Du J, Jiang H, et al. Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. Br J Haematol. 2014;166(5):690–701.CrossRefPubMedPubMedCentral
27.
go back to reference Bae J, Smith R, Daley J, Mimura N, Tai YT, Anderson KC, et al. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(17):4850–60.CrossRef Bae J, Smith R, Daley J, Mimura N, Tai YT, Anderson KC, et al. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(17):4850–60.CrossRef
28.
go back to reference Hong S, Lee H, Jung K, Lee SM, Lee SJ, Jun HJ, et al. Tumor cells loaded with alpha-galactosylceramide promote therapeutic NKT-dependent anti-tumor immunity in multiple myeloma. Immunol Lett. 2013;156(1–2):132–9.CrossRefPubMed Hong S, Lee H, Jung K, Lee SM, Lee SJ, Jun HJ, et al. Tumor cells loaded with alpha-galactosylceramide promote therapeutic NKT-dependent anti-tumor immunity in multiple myeloma. Immunol Lett. 2013;156(1–2):132–9.CrossRefPubMed
29.
go back to reference Atanackovic D, Luetkens T, Kroger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. 2014;28(5):993–1000.CrossRefPubMed Atanackovic D, Luetkens T, Kroger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. 2014;28(5):993–1000.CrossRefPubMed
30.
go back to reference Zheng C, Huang D, Liu L, Bjorkholm M, Holm G, Yi Q, et al. Cytotoxic T-lymphocyte antigen-4 microsatellite polymorphism is associated with multiple myeloma. Br J Haematol. 2001;112(1):216–8.CrossRefPubMed Zheng C, Huang D, Liu L, Bjorkholm M, Holm G, Yi Q, et al. Cytotoxic T-lymphocyte antigen-4 microsatellite polymorphism is associated with multiple myeloma. Br J Haematol. 2001;112(1):216–8.CrossRefPubMed
31.
go back to reference Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naive CD4+ CD25 high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107(10):3940–9.CrossRefPubMed Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naive CD4+ CD25 high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107(10):3940–9.CrossRefPubMed
32.
go back to reference Zeidler R, Mysliwietz J, Csanady M, Walz A, Ziegler I, Schmitt B, et al. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer. 2000;83(2):261–6.CrossRefPubMedPubMedCentral Zeidler R, Mysliwietz J, Csanady M, Walz A, Ziegler I, Schmitt B, et al. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer. 2000;83(2):261–6.CrossRefPubMedPubMedCentral
33.
go back to reference Zitron IM, Thakur A, Norkina O, Barger GR, Lum LG, Mittal S. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies. BMC Cancer. 2013;13:83.CrossRefPubMedPubMedCentral Zitron IM, Thakur A, Norkina O, Barger GR, Lum LG, Mittal S. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies. BMC Cancer. 2013;13:83.CrossRefPubMedPubMedCentral
34.
go back to reference Alvarez-Vallina L, Hawkins RE. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol. 1996;26(10):2304–9.CrossRefPubMed Alvarez-Vallina L, Hawkins RE. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol. 1996;26(10):2304–9.CrossRefPubMed
35.
go back to reference McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U, et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol (Baltimore, Md: 1950). 2001;166(10):6112–7.CrossRef McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U, et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol (Baltimore, Md: 1950). 2001;166(10):6112–7.CrossRef
36.
go back to reference Bhutani D, Lum LG. Activated T cells armed with bispecific antibodies kill tumor targets. Curr Opin Hematol. 2015;22(6):476–83.CrossRefPubMed Bhutani D, Lum LG. Activated T cells armed with bispecific antibodies kill tumor targets. Curr Opin Hematol. 2015;22(6):476–83.CrossRefPubMed
37.
38.
go back to reference Guidance Development Review C, Working Group for Clinical Studies of Cancer I, Working Group for Effector Cell T, Working Group for CMCN-cS, Working Group for Cancer V, Adjuvants, et al. Guidance on cancer immunotherapy development in early-phase clinical studies. Cancer Sci. 2015;106(12):1761–71.CrossRef Guidance Development Review C, Working Group for Clinical Studies of Cancer I, Working Group for Effector Cell T, Working Group for CMCN-cS, Working Group for Cancer V, Adjuvants, et al. Guidance on cancer immunotherapy development in early-phase clinical studies. Cancer Sci. 2015;106(12):1761–71.CrossRef
39.
go back to reference Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015;29(10):2110–3.CrossRefPubMed Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015;29(10):2110–3.CrossRefPubMed
40.
go back to reference Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol. 2016;9(1):52. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol. 2016;9(1):52.
41.
go back to reference Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.CrossRefPubMed Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.CrossRefPubMed
42.
go back to reference Roccaro AM, Mishima Y, Sacco A, Moschetta M, Tai YT, Shi J, et al. CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep. 2015;12(4):622–35.CrossRefPubMedPubMedCentral Roccaro AM, Mishima Y, Sacco A, Moschetta M, Tai YT, Shi J, et al. CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep. 2015;12(4):622–35.CrossRefPubMedPubMedCentral
43.
go back to reference Hoyos V, Borrello I. The immunotherapy era of myeloma: monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood. 2016;128(13):1679–87.CrossRefPubMed Hoyos V, Borrello I. The immunotherapy era of myeloma: monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood. 2016;128(13):1679–87.CrossRefPubMed
45.
go back to reference Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.CrossRefPubMedPubMedCentral Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.CrossRefPubMedPubMedCentral
46.
go back to reference Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5(197):197ra03.CrossRef Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5(197):197ra03.CrossRef
47.
go back to reference van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA. 2010;107(24):10972–7.CrossRefPubMedPubMedCentral van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA. 2010;107(24):10972–7.CrossRefPubMedPubMedCentral
48.
go back to reference Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.CrossRefPubMedPubMedCentral Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.CrossRefPubMedPubMedCentral
49.
go back to reference Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Investig. 2011;121(5):1822–6.CrossRefPubMedPubMedCentral Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Investig. 2011;121(5):1822–6.CrossRefPubMedPubMedCentral
50.
go back to reference Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J (Sudbury, Mass). 2014;20(2):119–22.CrossRef Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J (Sudbury, Mass). 2014;20(2):119–22.CrossRef
52.
go back to reference Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE. 2013;8(12):e82742.CrossRefPubMedPubMedCentral Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE. 2013;8(12):e82742.CrossRefPubMedPubMedCentral
53.
go back to reference Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.CrossRefPubMedPubMedCentral Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.CrossRefPubMedPubMedCentral
54.
go back to reference Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7.CrossRefPubMedPubMedCentral Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7.CrossRefPubMedPubMedCentral
55.
go back to reference Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(8):2048–60.CrossRef Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(8):2048–60.CrossRef
56.
go back to reference Luptakova K, Avigan D. Immune therapy in multiple myeloma. Clin Adv Hematol Oncol H&O. 2015;13(11):767–75. Luptakova K, Avigan D. Immune therapy in multiple myeloma. Clin Adv Hematol Oncol H&O. 2015;13(11):767–75.
57.
go back to reference Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric antigen receptor (CAR) therapy for multiple myeloma. Br J Haematol. 2016;172(5):685–98.CrossRefPubMed Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric antigen receptor (CAR) therapy for multiple myeloma. Br J Haematol. 2016;172(5):685–98.CrossRefPubMed
58.
go back to reference Yang SY, Xiao XY, Zhang WG, Zhang LJ, Zhang W, Zhou B, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 2005;5:83.CrossRefPubMedPubMedCentral Yang SY, Xiao XY, Zhang WG, Zhang LJ, Zhang W, Zhou B, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 2005;5:83.CrossRefPubMedPubMedCentral
59.
go back to reference Meng S, Lu C, Zhang W, Shen W, Wei Y, Su D, et al. MMSA-1 expression pattern in multiple myeloma and its clinical significance. Clin Exp Med. 2016;16(4):599–609.CrossRefPubMed Meng S, Lu C, Zhang W, Shen W, Wei Y, Su D, et al. MMSA-1 expression pattern in multiple myeloma and its clinical significance. Clin Exp Med. 2016;16(4):599–609.CrossRefPubMed
60.
go back to reference Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev. 2013;27(6):261–7.CrossRefPubMedPubMedCentral Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev. 2013;27(6):261–7.CrossRefPubMedPubMedCentral
Metadata
Title
Current treatment options of T cell-associated immunotherapy in multiple myeloma
Publication date
01-11-2017
Published in
Clinical and Experimental Medicine / Issue 4/2017
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-017-0450-9

Other articles of this Issue 4/2017

Clinical and Experimental Medicine 4/2017 Go to the issue