Skip to main content
Top
Published in: Clinical and Experimental Medicine 4/2017

01-11-2017 | Original Article

New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients

Authors: Hanna Romanowicz, Dominik Strapagiel, Marcin Słomka, Marta Sobalska-Kwapis, Ewa Kępka, Anna Siewierska-Górska, Marek Zadrożny, Jan Bieńkiewicz, Beata Smolarz

Published in: Clinical and Experimental Medicine | Issue 4/2017

Login to get access

Abstract

Breast cancer is the most common cause of malignancy and mortality in women worldwide. This study aimed at localising homologous recombination repair (HR) genes and their chromosomal loci and correlating their nucleotide variants with susceptibility to breast cancer. In this study, authors analysed the association between single nucleotide polymorphisms (SNPs) in homologous recombination repair genes and the incidence of breast cancer in the population of Polish women. Blood samples from 94 breast cancer patients were analysed as test group. Individuals were recruited into the study at the Department of Oncological Surgery and Breast Diseases of the Institute of the Polish Mother’s Memorial Hospital in Lodz, Poland. Healthy controls (n = 500) were obtained from the Biobank Laboratory, Department of Molecular Biophysics, University of Lodz. Then, DNA of breast cancer patients was compared with one of the disease-free women. The test was supported by microarray analysis. Statistically significant correlations were identified between breast cancer and 3 not described previously SNPs of homologous recombination repair genes BRCA1 and BRCA2: rs59004709, rs4986852 and rs1799950. Further studies on larger groups are warranted to support the hypothesis of correlation between the abovementioned genetic variants and breast cancer risk.
Literature
1.
3.
go back to reference Aloyz R, Xu ZY, Bello V, et al. Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res. 2002;62:5457–62.PubMed Aloyz R, Xu ZY, Bello V, et al. Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res. 2002;62:5457–62.PubMed
4.
go back to reference Liu C, Zhou S, Begum S, et al. Increased expression and activity of repair genes TDP1 and XPF in non-small cell lung cancer. Lung Cancer. 2007;55:303–11.CrossRefPubMed Liu C, Zhou S, Begum S, et al. Increased expression and activity of repair genes TDP1 and XPF in non-small cell lung cancer. Lung Cancer. 2007;55:303–11.CrossRefPubMed
5.
go back to reference Xu ZY, Loignon M, Han FY, Panasci L, Aloyz R. Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis. J Pharmacol Exp Ther. 2005;314:495–505.CrossRefPubMed Xu ZY, Loignon M, Han FY, Panasci L, Aloyz R. Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis. J Pharmacol Exp Ther. 2005;314:495–505.CrossRefPubMed
6.
go back to reference Ganguly A, Shields CL. Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis. 2010;16:1292–303.PubMedPubMedCentral Ganguly A, Shields CL. Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis. 2010;16:1292–303.PubMedPubMedCentral
7.
go back to reference Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.CrossRefPubMed Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.CrossRefPubMed
8.
go back to reference Sarasin A, Dessen P. DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med. 2010;10:413–8.CrossRefPubMed Sarasin A, Dessen P. DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med. 2010;10:413–8.CrossRefPubMed
9.
go back to reference Davidson JM, Gorringe KL, Chin SF, et al. Molecular cytogenetic analysis of breast cancer cell lines. Br J Cancer. 2006;83:1309–17.CrossRef Davidson JM, Gorringe KL, Chin SF, et al. Molecular cytogenetic analysis of breast cancer cell lines. Br J Cancer. 2006;83:1309–17.CrossRef
10.
go back to reference Forozan F, Mahlamaki EH, Monni O, et al. Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 2000;60:4519–25.PubMed Forozan F, Mahlamaki EH, Monni O, et al. Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 2000;60:4519–25.PubMed
11.
go back to reference Kytola S, Rummukainen J, Nordgren A, et al. Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer. 2000;28:308–17.CrossRefPubMed Kytola S, Rummukainen J, Nordgren A, et al. Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer. 2000;28:308–17.CrossRefPubMed
12.
go back to reference Loveday RL, Greenman J, Simcox DL, et al. Genetic changes in breast cancer detected by comparative genomic hybridisation. Int J Cancer. 2000;86:494–500.CrossRefPubMed Loveday RL, Greenman J, Simcox DL, et al. Genetic changes in breast cancer detected by comparative genomic hybridisation. Int J Cancer. 2000;86:494–500.CrossRefPubMed
13.
go back to reference Vijg J, Dolle MET. Large genome rearrangements as a primary cause of aging. Mech Ageing Dev. 2002;123:907–15.CrossRefPubMed Vijg J, Dolle MET. Large genome rearrangements as a primary cause of aging. Mech Ageing Dev. 2002;123:907–15.CrossRefPubMed
14.
go back to reference Bahar R, Hartmann CH, Rodriguez KA, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4.CrossRefPubMed Bahar R, Hartmann CH, Rodriguez KA, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4.CrossRefPubMed
15.
16.
go back to reference Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 2003;532:103–15.CrossRefPubMed Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 2003;532:103–15.CrossRefPubMed
17.
go back to reference Silva SN, Tomar M, Paulo C, et al. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. 2010;34:85–92.CrossRefPubMed Silva SN, Tomar M, Paulo C, et al. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. 2010;34:85–92.CrossRefPubMed
18.
go back to reference Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59:2557–61.PubMed Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59:2557–61.PubMed
19.
go back to reference Strapagiel D, Sobalska-Kwapis M, Słomka M, Marciniak B. Biobank Lodz—DNA based biobank at the University of Lodz, Poland, Open J Bioresour. 2016, in press. Strapagiel D, Sobalska-Kwapis M, Słomka M, Marciniak B. Biobank Lodz—DNA based biobank at the University of Lodz, Poland, Open J Bioresour. 2016, in press.
20.
go back to reference Strapagiel D, Majewska M, Słomka M, Janik K, Sobalska M, Bartosz G. Method for determining sex, involves utilizing melting profile analysis technique, and obtaining specific fragments of DNA by PCR-based DNA from samples of human biological material. Patent Number(s): PL406569-A1, 2015. Strapagiel D, Majewska M, Słomka M, Janik K, Sobalska M, Bartosz G. Method for determining sex, involves utilizing melting profile analysis technique, and obtaining specific fragments of DNA by PCR-based DNA from samples of human biological material. Patent Number(s): PL406569-A1, 2015.
21.
go back to reference Purcell S, Neale B, Todd-Brown K, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral
22.
go back to reference Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer. 1996;74:1–5.CrossRefPubMedPubMedCentral Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer. 1996;74:1–5.CrossRefPubMedPubMedCentral
23.
go back to reference Spitz MR, Wei Q, Dong Q, Amos CI, Wu X. Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomark Prev. 2003;12:689–98. Spitz MR, Wei Q, Dong Q, Amos CI, Wu X. Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomark Prev. 2003;12:689–98.
24.
go back to reference Xie H, Xia K, Rong H, Chen X. Genetic polymorphism in hOGG1 is associated with triple-negative breast cancer risk in Chinese Han women. Breast. 2013;22:707–12.CrossRefPubMed Xie H, Xia K, Rong H, Chen X. Genetic polymorphism in hOGG1 is associated with triple-negative breast cancer risk in Chinese Han women. Breast. 2013;22:707–12.CrossRefPubMed
25.
go back to reference Gross E, Meul C, Raab S, et al. Somatic copy number changes in DPYD are associated with lower risk of recurrence in triple-negative breast cancers. Br J Cancer. 2013;109:2347–55.CrossRefPubMedPubMedCentral Gross E, Meul C, Raab S, et al. Somatic copy number changes in DPYD are associated with lower risk of recurrence in triple-negative breast cancers. Br J Cancer. 2013;109:2347–55.CrossRefPubMedPubMedCentral
26.
go back to reference Smolarz B, Makowska M, Samulak D, et al. Single nucleotide polymorphisms (SNPs) of ERCC2, hOGG1, and XRCC1 DNA repair genes and the risk of triple-negative breast cancer in Polish women. Tumour Biol. 2014;35:3495–502.CrossRefPubMedPubMedCentral Smolarz B, Makowska M, Samulak D, et al. Single nucleotide polymorphisms (SNPs) of ERCC2, hOGG1, and XRCC1 DNA repair genes and the risk of triple-negative breast cancer in Polish women. Tumour Biol. 2014;35:3495–502.CrossRefPubMedPubMedCentral
27.
go back to reference Smolarz B, Zadrożny M, Duda-Szymańska J, et al. RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol. 2013;64:39–43.CrossRefPubMed Smolarz B, Zadrożny M, Duda-Szymańska J, et al. RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol. 2013;64:39–43.CrossRefPubMed
28.
go back to reference Kennedy RD, D’Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005;19:2925–40.CrossRefPubMed Kennedy RD, D’Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005;19:2925–40.CrossRefPubMed
29.
go back to reference San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229–57.CrossRefPubMed San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229–57.CrossRefPubMed
30.
31.
go back to reference Kadouri L, Kote-Jarai Z, Hubert A, et al. A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer. 2004;90:2002–5.CrossRefPubMedPubMedCentral Kadouri L, Kote-Jarai Z, Hubert A, et al. A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer. 2004;90:2002–5.CrossRefPubMedPubMedCentral
32.
go back to reference Hosseini M, Houshmand M, Ebrahimi A. RAD51 polymorphisms and breast cancer risk. Mol Biol Rep. 2013;40:665–8.CrossRefPubMed Hosseini M, Houshmand M, Ebrahimi A. RAD51 polymorphisms and breast cancer risk. Mol Biol Rep. 2013;40:665–8.CrossRefPubMed
33.
go back to reference Romanowicz-Makowska H, Smolarz B, Zadrozny M, et al. The association between polymorphisms of the RAD51-G135C, XRCC2-Arg188His and XRCC3-Thr241Met genes and clinico-pathologic features in breast cancer in Poland. Eur J Gynaecol Oncol. 2012;33:145–50.PubMed Romanowicz-Makowska H, Smolarz B, Zadrozny M, et al. The association between polymorphisms of the RAD51-G135C, XRCC2-Arg188His and XRCC3-Thr241Met genes and clinico-pathologic features in breast cancer in Poland. Eur J Gynaecol Oncol. 2012;33:145–50.PubMed
34.
go back to reference Han J, Hankinson SE, Zhang SM. Interaction between genetic variations in DNA repair genes and plasma folate on breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2004;13:520–4.CrossRefPubMed Han J, Hankinson SE, Zhang SM. Interaction between genetic variations in DNA repair genes and plasma folate on breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2004;13:520–4.CrossRefPubMed
35.
go back to reference Costa S, Pinto D, Pereira D, et al. DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat. 2007;103:209–17.CrossRefPubMed Costa S, Pinto D, Pereira D, et al. DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat. 2007;103:209–17.CrossRefPubMed
36.
go back to reference Sangrajrang S, Schmezer P, Burkholder I, et al. The XRCC3 Thr241Met polymorphism and breast cancer risk: a case control study in a Thai population. Biomarkers. 2007;12:523–32.CrossRefPubMed Sangrajrang S, Schmezer P, Burkholder I, et al. The XRCC3 Thr241Met polymorphism and breast cancer risk: a case control study in a Thai population. Biomarkers. 2007;12:523–32.CrossRefPubMed
37.
go back to reference Economopoulos KP, Sergentanis TN. XRCC3 Thr241Met polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;121:439–43.CrossRefPubMed Economopoulos KP, Sergentanis TN. XRCC3 Thr241Met polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;121:439–43.CrossRefPubMed
38.
go back to reference Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res. 2005;3:531–9.CrossRefPubMed Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res. 2005;3:531–9.CrossRefPubMed
39.
go back to reference Parvin S, Islam MS, Al-Mamun MM, et al. Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer. 2016;. doi:10.1007/s12282-016-0692.PubMed Parvin S, Islam MS, Al-Mamun MM, et al. Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer. 2016;. doi:10.​1007/​s12282-016-0692.PubMed
40.
go back to reference Basu NN, Ingham S, Hodson J, et al. Risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a 30-year semi-prospective analysis. Fam Cancer. 2015;14:531–8.CrossRefPubMed Basu NN, Ingham S, Hodson J, et al. Risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a 30-year semi-prospective analysis. Fam Cancer. 2015;14:531–8.CrossRefPubMed
42.
go back to reference Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet. 2002;32:180–4.CrossRefPubMed Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet. 2002;32:180–4.CrossRefPubMed
43.
44.
45.
go back to reference Kluska A, Balabas A, Paziewska A, et al. New recurrent BRCA1/2 mutations in Polish patients with familial breast/ovarian cancer detected by next generation sequencing. BMC Med Genomics. 2015;8:19.CrossRefPubMedPubMedCentral Kluska A, Balabas A, Paziewska A, et al. New recurrent BRCA1/2 mutations in Polish patients with familial breast/ovarian cancer detected by next generation sequencing. BMC Med Genomics. 2015;8:19.CrossRefPubMedPubMedCentral
46.
go back to reference Jakubowska A, Gronwald J, Menkiszak J, et al. The RAD51 135 G > C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2007;16:270–5.CrossRefPubMed Jakubowska A, Gronwald J, Menkiszak J, et al. The RAD51 135 G > C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2007;16:270–5.CrossRefPubMed
47.
go back to reference Jakubowska A, Gronwald J, Menkiszak J, et al. Hamann UBRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat. 2010;119:201–11.CrossRefPubMed Jakubowska A, Gronwald J, Menkiszak J, et al. Hamann UBRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat. 2010;119:201–11.CrossRefPubMed
Metadata
Title
New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients
Authors
Hanna Romanowicz
Dominik Strapagiel
Marcin Słomka
Marta Sobalska-Kwapis
Ewa Kępka
Anna Siewierska-Górska
Marek Zadrożny
Jan Bieńkiewicz
Beata Smolarz
Publication date
01-11-2017
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 4/2017
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-016-0441-2

Other articles of this Issue 4/2017

Clinical and Experimental Medicine 4/2017 Go to the issue