Skip to main content
Top
Published in: Clinical and Experimental Medicine 3/2017

01-08-2017 | Review Article

“Classical organic acidurias”: diagnosis and pathogenesis

Authors: Guglielmo RD Villani, Giovanna Gallo, Emanuela Scolamiero, Francesco Salvatore, Margherita Ruoppolo

Published in: Clinical and Experimental Medicine | Issue 3/2017

Login to get access

Abstract

Organic acidurias are inherited metabolic diseases due to the deficiency of an enzyme or a transport protein involved in one of the several cellular metabolic pathways devoted to the catabolism of amino acids, carbohydrates or lipids. These deficiencies result in abnormal accumulation of organic acids in the body and their abnormal excretion in urine. More than 65 organic acidurias have been described; the incidence varies, individually, from 1 out of 10,000 to >1 out of 1000,000 live births. Collectively, their incidence approximates 1 out of 3000 live births. Among these disorders, methyl malonic aciduria, propionic aciduria, maple syrup urine disease and isovaleric aciduria are sometimes referred to as classical organic acidurias. In this review, we focused on the basic GC–MS-based methodologies employed in the diagnosis of classical organic acidurias and provided updated reference values for the most common involved organic acids. We also attempted to provide the most recent updates on the pathogenetic bases of these diseases.
Literature
1.
go back to reference Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.
2.
go back to reference Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.PubMedCrossRef Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.PubMedCrossRef
3.
4.
5.
go back to reference Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.PubMedCrossRef Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.PubMedCrossRef
7.
go back to reference Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.PubMedCrossRef Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.PubMedCrossRef
8.
go back to reference García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.PubMed García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.PubMed
9.
go back to reference Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.PubMed Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.PubMed
10.
go back to reference Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.PubMed Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.PubMed
11.
go back to reference la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.PubMedCrossRef la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.PubMedCrossRef
12.
go back to reference Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.PubMed Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.PubMed
13.
go back to reference Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.PubMed Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.PubMed
14.
go back to reference Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.PubMedCrossRef Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.PubMedCrossRef
15.
go back to reference Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.PubMedCrossRef Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.PubMedCrossRef
16.
go back to reference Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.PubMedCrossRef Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.PubMedCrossRef
17.
go back to reference Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.PubMedPubMedCentralCrossRef Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.PubMedPubMedCentralCrossRef
18.
go back to reference Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://www.ncbi.nlm.nih.gov/books/NBK1231/ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005. Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1231/​ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005.
19.
go back to reference Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.CrossRef Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.CrossRef
20.
go back to reference Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.PubMedPubMedCentralCrossRef Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.PubMedPubMedCentralCrossRef
21.
go back to reference Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.PubMedCrossRef Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.PubMedCrossRef
23.
go back to reference Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.PubMedCrossRef Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.PubMedCrossRef
24.
go back to reference Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.PubMedPubMedCentralCrossRef Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.PubMedPubMedCentralCrossRef
25.
go back to reference Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.PubMedPubMedCentralCrossRef Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.PubMedPubMedCentralCrossRef
26.
go back to reference Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.PubMedCrossRef Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.PubMedCrossRef
27.
go back to reference Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.PubMedPubMedCentralCrossRef Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.PubMedPubMedCentralCrossRef
28.
go back to reference Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.PubMed Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.PubMed
29.
go back to reference Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.PubMedCrossRef Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.PubMedCrossRef
30.
go back to reference Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.PubMedCrossRef Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.PubMedCrossRef
31.
go back to reference Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi:10.1097/MD.0000000000000584. Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi:10.​1097/​MD.​0000000000000584​.
32.
go back to reference De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.PubMedCrossRef De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.PubMedCrossRef
33.
go back to reference Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedCrossRef Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedCrossRef
34.
go back to reference Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.PubMedCrossRef Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.PubMedCrossRef
35.
go back to reference Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.PubMedCrossRef Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.PubMedCrossRef
36.
go back to reference Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.PubMedPubMedCentralCrossRef Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.PubMedPubMedCentralCrossRef
37.
go back to reference Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.PubMedCrossRef Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.PubMedCrossRef
38.
go back to reference Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.PubMedCrossRef Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.PubMedCrossRef
39.
go back to reference Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.PubMedCrossRef Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.PubMedCrossRef
40.
go back to reference Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.PubMedCrossRef Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.PubMedCrossRef
41.
go back to reference Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.PubMedCrossRef Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.PubMedCrossRef
42.
go back to reference Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.PubMedCrossRef Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.PubMedCrossRef
43.
go back to reference Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.PubMedCrossRef Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.PubMedCrossRef
44.
go back to reference Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.PubMedPubMedCentral Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.PubMedPubMedCentral
45.
go back to reference Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.PubMedCrossRef Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.PubMedCrossRef
46.
go back to reference De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.PubMedCrossRef De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.PubMedCrossRef
47.
go back to reference Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.PubMedCrossRef Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.PubMedCrossRef
48.
go back to reference Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.PubMedCrossRef Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.PubMedCrossRef
49.
go back to reference Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.PubMedCrossRef Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.PubMedCrossRef
50.
go back to reference Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.PubMedPubMedCentralCrossRef Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.PubMedPubMedCentralCrossRef
51.
go back to reference Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.PubMedCrossRef Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.PubMedCrossRef
52.
go back to reference Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.CrossRef Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.CrossRef
53.
go back to reference Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.CrossRef Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.CrossRef
54.
go back to reference Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://www.ncbi.nlm.nih.gov/books/NBK92946/ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012. Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK92946/​ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012.
55.
go back to reference Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.PubMedCrossRef Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.PubMedCrossRef
56.
go back to reference Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.PubMedPubMedCentralCrossRef Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.PubMedPubMedCentralCrossRef
57.
go back to reference Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.PubMed Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.PubMed
58.
go back to reference Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.PubMedCrossRef Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.PubMedCrossRef
59.
go back to reference Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.PubMedCrossRef Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.PubMedCrossRef
60.
go back to reference Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.PubMedPubMedCentralCrossRef Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.PubMedPubMedCentralCrossRef
61.
go back to reference Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.PubMedPubMedCentralCrossRef Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.PubMedPubMedCentralCrossRef
62.
go back to reference Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.PubMedCrossRef Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.PubMedCrossRef
63.
go back to reference Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.PubMedCrossRef Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.PubMedCrossRef
64.
go back to reference De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.CrossRef De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.CrossRef
65.
go back to reference Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.PubMedCrossRef Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.PubMedCrossRef
66.
go back to reference Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.PubMedCrossRef Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.PubMedCrossRef
67.
go back to reference Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.PubMedCrossRef Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.PubMedCrossRef
68.
go back to reference Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.PubMedCrossRef Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.PubMedCrossRef
69.
go back to reference Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.CrossRef Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.CrossRef
70.
go back to reference El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.CrossRef El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.CrossRef
71.
go back to reference de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.PubMedCrossRef de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.PubMedCrossRef
72.
go back to reference Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.PubMedCrossRef Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.PubMedCrossRef
73.
go back to reference Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.PubMedCrossRef Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.PubMedCrossRef
74.
go back to reference Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef
75.
go back to reference Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.PubMedPubMedCentralCrossRef Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.PubMedPubMedCentralCrossRef
76.
go back to reference Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef
77.
go back to reference Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.PubMedCrossRef Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.PubMedCrossRef
78.
go back to reference Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.PubMedCrossRef Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.PubMedCrossRef
79.
go back to reference Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.PubMedPubMedCentralCrossRef Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.PubMedPubMedCentralCrossRef
80.
go back to reference Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.PubMedCrossRef Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.PubMedCrossRef
81.
go back to reference Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.PubMedCrossRef Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.PubMedCrossRef
82.
go back to reference Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.PubMedCrossRef Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.PubMedCrossRef
83.
go back to reference Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.PubMedCrossRef Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.PubMedCrossRef
84.
go back to reference Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.PubMedCrossRef Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.PubMedCrossRef
85.
go back to reference Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://www.ncbi.nlm.nih.gov/books/NBK1319/ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1319/​ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006.
86.
go back to reference Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.PubMedCrossRef Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.PubMedCrossRef
87.
go back to reference Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.PubMedCrossRef Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.PubMedCrossRef
88.
go back to reference De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.PubMedCrossRef De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.PubMedCrossRef
89.
go back to reference Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.PubMedCrossRef Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.PubMedCrossRef
90.
go back to reference Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print]. Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print].
91.
go back to reference Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.CrossRef Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.CrossRef
92.
go back to reference Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.PubMedCrossRef Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.PubMedCrossRef
93.
go back to reference Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.PubMedPubMedCentralCrossRef Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.PubMedPubMedCentralCrossRef
94.
go back to reference Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.PubMed Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.PubMed
95.
go back to reference Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.PubMedCrossRef Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.PubMedCrossRef
96.
go back to reference Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.PubMedCrossRef Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.PubMedCrossRef
97.
go back to reference Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.PubMedCrossRef Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.PubMedCrossRef
98.
go back to reference Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.PubMedCrossRef Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.PubMedCrossRef
99.
go back to reference Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.PubMedCrossRef Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.PubMedCrossRef
100.
go back to reference Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.PubMedCrossRef Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.PubMedCrossRef
101.
go back to reference Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.CrossRef Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.CrossRef
102.
go back to reference Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65.
103.
go back to reference Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.PubMedCrossRef Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.PubMedCrossRef
104.
go back to reference Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.PubMedCrossRef Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.PubMedCrossRef
105.
go back to reference Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.PubMedCrossRef Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.PubMedCrossRef
106.
go back to reference Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.PubMedCrossRef Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.PubMedCrossRef
107.
go back to reference Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print]. Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print].
108.
go back to reference Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.PubMedCrossRef Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.PubMedCrossRef
109.
go back to reference Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.CrossRef Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.CrossRef
110.
go back to reference Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.CrossRef Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.CrossRef
111.
go back to reference Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.PubMedCrossRef Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.PubMedCrossRef
112.
go back to reference Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.PubMedCrossRef Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.PubMedCrossRef
113.
go back to reference Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.PubMedPubMedCentralCrossRef Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.PubMedPubMedCentralCrossRef
114.
go back to reference Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.PubMedCrossRef Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.PubMedCrossRef
115.
go back to reference Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.PubMedCrossRef Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.PubMedCrossRef
116.
go back to reference Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.PubMedCrossRef Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.PubMedCrossRef
117.
go back to reference Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.PubMedCrossRef Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.PubMedCrossRef
118.
go back to reference Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.CrossRef Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.CrossRef
Metadata
Title
“Classical organic acidurias”: diagnosis and pathogenesis
Authors
Guglielmo RD Villani
Giovanna Gallo
Emanuela Scolamiero
Francesco Salvatore
Margherita Ruoppolo
Publication date
01-08-2017
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 3/2017
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-016-0435-0

Other articles of this Issue 3/2017

Clinical and Experimental Medicine 3/2017 Go to the issue