Skip to main content
Top
Published in: The Journal of Headache and Pain 7/2012

Open Access 01-10-2012 | Review Article

Future possibilities in migraine genetics

Authors: Laura Aviaja Rudkjobing, Ann-Louise Esserlind, Jes Olesen

Published in: The Journal of Headache and Pain | Issue 7/2012

Login to get access

Abstract

Migraine with and without aura (MA and MO, respectively) have a strong genetic basis. Different approaches using linkage-, candidate gene- and genome-wide association studies have been explored, yielding limited results. This may indicate that the genetic component in migraine is due to rare variants; capturing these will require more detailed sequencing in order to be discovered. Next-generation sequencing (NGS) techniques such as whole exome and whole genome sequencing have been successful in finding genes in especially monogenic disorders. As the molecular genetics research progresses, the technology will follow, rendering these approaches more applicable in the search for causative migraine genes in MO and MA. To date, no studies using NGS in migraine genetics have been published. In order to gain insight into the future possibilities of migraine genetics, we have looked at NGS studies in other diseases and have interviewed three experts in the field of genetics and complex traits. The experts’ ideas suggest that the preferred NGS approach depends on the expected effect size and the frequency of the variants of interest. Family-specific variants can be found by sequencing a small number of individuals, while a large number of unrelated cases are needed to find common and rare variants. NGS is currently hampered by high cost and technical problems concurrent with analyzing large amounts of data generated, especially by whole genome sequencing. As genome-wide association chips, exome sequencing and whole genome sequencing gradually become more affordable, these approaches will be used on a larger scale. This may reveal new risk variants in migraine which may offer previously unsuspected biological insights.
Literature
1.
go back to reference Stovner LJ, Zwart JA, Hagen K et al (2006) Epidemiology of headache in Europe. Eur J Neurol 13(4):333–345, 16643310, 10.1111/j.1468-1331.2006.01184.x, 1:STN:280:DC%2BD283jslSmtw%3D%3DCrossRefPubMed Stovner LJ, Zwart JA, Hagen K et al (2006) Epidemiology of headache in Europe. Eur J Neurol 13(4):333–345, 16643310, 10.1111/j.1468-1331.2006.01184.x, 1:STN:280:DC%2BD283jslSmtw%3D%3DCrossRefPubMed
2.
go back to reference International Headache Society (2004) The International Classification of Headache Disorders, 2nd edn. Cephalalgia 24(Suppl 1):9–160 International Headache Society (2004) The International Classification of Headache Disorders, 2nd edn. Cephalalgia 24(Suppl 1):9–160
3.
go back to reference Gervil M, Ulrich V, Kyvik KO et al (1999) Migraine without aura: a population-based twin study. Ann Neurol 46(4):606–611, 10514097, 10.1002/1531-8249(199910)46:4<606::AID-ANA8>3.0.CO;2-O, 1:STN:280:DyaK1Mvkt1amtw%3D%3DCrossRefPubMed Gervil M, Ulrich V, Kyvik KO et al (1999) Migraine without aura: a population-based twin study. Ann Neurol 46(4):606–611, 10514097, 10.1002/1531-8249(199910)46:4<606::AID-ANA8>3.0.CO;2-O, 1:STN:280:DyaK1Mvkt1amtw%3D%3DCrossRefPubMed
4.
go back to reference Russell MB, Olesen J (1995) Increased familial risk and evidence of genetic factor in migraine. BMJ 311(7004):541–544, 7663209, 10.1136/bmj.311.7004.541, 1:STN:280:DyaK2Mzpt1amsw%3D%3DPubMedCentralCrossRefPubMed Russell MB, Olesen J (1995) Increased familial risk and evidence of genetic factor in migraine. BMJ 311(7004):541–544, 7663209, 10.1136/bmj.311.7004.541, 1:STN:280:DyaK2Mzpt1amsw%3D%3DPubMedCentralCrossRefPubMed
5.
go back to reference Ulrich V, Gervil M, Kyvik KO et al (1999) The inheritance of migraine with aura estimated by means of structural equation modelling. J Med Genet 36(3):225–227, 10204850, 1:STN:280:DyaK1M3hvFGntg%3D%3DPubMedCentralPubMed Ulrich V, Gervil M, Kyvik KO et al (1999) The inheritance of migraine with aura estimated by means of structural equation modelling. J Med Genet 36(3):225–227, 10204850, 1:STN:280:DyaK1M3hvFGntg%3D%3DPubMedCentralPubMed
6.
go back to reference De FM, Marconi R, Silvestri L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196, 10.1038/ng1081CrossRef De FM, Marconi R, Silvestri L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196, 10.1038/ng1081CrossRef
7.
go back to reference Dichgans M, Freilinger T, Eckstein G et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377, 16054936, 10.1016/S0140-6736(05)66786-4, 1:CAS:528:DC%2BD2MXmvVWmsbY%3DCrossRefPubMed Dichgans M, Freilinger T, Eckstein G et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377, 16054936, 10.1016/S0140-6736(05)66786-4, 1:CAS:528:DC%2BD2MXmvVWmsbY%3DCrossRefPubMed
8.
go back to reference Ophoff RA, Terwindt GM, Vergouwe MN et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552, 8898206, 10.1016/S0092-8674(00)81373-2, 1:CAS:528:DyaK28XmvVOqt78%3DCrossRefPubMed Ophoff RA, Terwindt GM, Vergouwe MN et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552, 8898206, 10.1016/S0092-8674(00)81373-2, 1:CAS:528:DyaK28XmvVOqt78%3DCrossRefPubMed
9.
go back to reference Nyholt DR, LaForge KS, Kallela M et al (2008) A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet 17(21):3318–3331, 18676988, 10.1093/hmg/ddn227, 1:CAS:528:DC%2BD1cXht1entrvLPubMedCentralCrossRefPubMed Nyholt DR, LaForge KS, Kallela M et al (2008) A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet 17(21):3318–3331, 18676988, 10.1093/hmg/ddn227, 1:CAS:528:DC%2BD1cXht1entrvLPubMedCentralCrossRefPubMed
10.
go back to reference Anttila V, Stefansson H, Kallela M et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42(10):869–873, 20802479, 10.1038/ng.652, 1:CAS:528:DC%2BC3cXhtVyiu73PPubMedCentralCrossRefPubMed Anttila V, Stefansson H, Kallela M et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42(10):869–873, 20802479, 10.1038/ng.652, 1:CAS:528:DC%2BC3cXhtVyiu73PPubMedCentralCrossRefPubMed
11.
go back to reference Chasman DI, Schurks M, Anttila V et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43(7):695–698, 21666692, 10.1038/ng.856, 1:CAS:528:DC%2BC3MXnsVWrtb0%3DPubMedCentralCrossRefPubMed Chasman DI, Schurks M, Anttila V et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43(7):695–698, 21666692, 10.1038/ng.856, 1:CAS:528:DC%2BC3MXnsVWrtb0%3DPubMedCentralCrossRefPubMed
12.
go back to reference Freilinger T, Anttila V, de Vreis B (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44(7):777–782, 22683712, 10.1038/ng.2307, 1:CAS:528:DC%2BC38XotlClu7g%3DPubMedCentralCrossRefPubMed Freilinger T, Anttila V, de Vreis B (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44(7):777–782, 22683712, 10.1038/ng.2307, 1:CAS:528:DC%2BC38XotlClu7g%3DPubMedCentralCrossRefPubMed
13.
go back to reference Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753, 19812666, 10.1038/nature08494, 1:CAS:528:DC%2BD1MXht1CisbrFPubMedCentralCrossRefPubMed Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753, 19812666, 10.1038/nature08494, 1:CAS:528:DC%2BD1MXht1CisbrFPubMedCentralCrossRefPubMed
14.
go back to reference Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344, 18349094, 10.1001/jama.299.11.1335, 1:CAS:528:DC%2BD1cXjsV2ku7g%3DCrossRefPubMed Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344, 18349094, 10.1001/jama.299.11.1335, 1:CAS:528:DC%2BD1cXjsV2ku7g%3DCrossRefPubMed
15.
go back to reference Altmuller J, Palmer LJ, Fischer G et al (2001) Genome-wide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69(5):936–950, 11565063, 10.1086/324069, 1:CAS:528:DC%2BD3MXotlGit7s%3DPubMedCentralCrossRefPubMed Altmuller J, Palmer LJ, Fischer G et al (2001) Genome-wide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69(5):936–950, 11565063, 10.1086/324069, 1:CAS:528:DC%2BD3MXotlGit7s%3DPubMedCentralCrossRefPubMed
16.
go back to reference Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3(5):391–397, 11988764, 10.1038/nrg796, 1:CAS:528:DC%2BD38Xjs1yhtb4%3DCrossRefPubMed Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3(5):391–397, 11988764, 10.1038/nrg796, 1:CAS:528:DC%2BD38Xjs1yhtb4%3DCrossRefPubMed
17.
go back to reference de Vries B, Frants RR, Ferrari MD et al (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132, 19455354, 10.1007/s00439-009-0684-z, 1:CAS:528:DC%2BD1MXoslaksbw%3DCrossRefPubMed de Vries B, Frants RR, Ferrari MD et al (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132, 19455354, 10.1007/s00439-009-0684-z, 1:CAS:528:DC%2BD1MXoslaksbw%3DCrossRefPubMed
18.
go back to reference Maher BH, Griffiths LR (2011) Identification of molecular genetic factors that influence migraine. Mol Genet Genomics 285(6):433–446, 21519858, 10.1007/s00438-011-0622-3, 1:CAS:528:DC%2BC3MXmsFWmu78%3DCrossRefPubMed Maher BH, Griffiths LR (2011) Identification of molecular genetic factors that influence migraine. Mol Genet Genomics 285(6):433–446, 21519858, 10.1007/s00438-011-0622-3, 1:CAS:528:DC%2BC3MXmsFWmu78%3DCrossRefPubMed
19.
go back to reference Anttila V, Nyholt DR, Kallela M et al (2008) Consistently replicating locus linked to migraine on 10q22-q23. Am J Hum Genet 82(5):1051–1063, 18423523, 10.1016/j.ajhg.2008.03.003, 1:CAS:528:DC%2BD1cXlvFeqtrs%3DPubMedCentralCrossRefPubMed Anttila V, Nyholt DR, Kallela M et al (2008) Consistently replicating locus linked to migraine on 10q22-q23. Am J Hum Genet 82(5):1051–1063, 18423523, 10.1016/j.ajhg.2008.03.003, 1:CAS:528:DC%2BD1cXlvFeqtrs%3DPubMedCentralCrossRefPubMed
20.
go back to reference Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510, 11525833, 10.1016/S0168-9525(01)02410-6, 1:CAS:528:DC%2BD3MXmtV2gs7w%3DCrossRefPubMed Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510, 11525833, 10.1016/S0168-9525(01)02410-6, 1:CAS:528:DC%2BD3MXmtV2gs7w%3DCrossRefPubMed
21.
go back to reference Collins FS, Guyer MS, Charkravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278(5343):1580–1581, 9411782, 10.1126/science.278.5343.1580, 1:CAS:528:DyaK2sXnslGgtbk%3DCrossRefPubMed Collins FS, Guyer MS, Charkravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278(5343):1580–1581, 9411782, 10.1126/science.278.5343.1580, 1:CAS:528:DyaK2sXnslGgtbk%3DCrossRefPubMed
22.
go back to reference Ligthart L, de Vries B, Smith AV et al (2011) Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet 19(8):901–907, 21448238, 10.1038/ejhg.2011.48, 1:CAS:528:DC%2BC3MXpt1aksb0%3DPubMedCentralCrossRefPubMed Ligthart L, de Vries B, Smith AV et al (2011) Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet 19(8):901–907, 21448238, 10.1038/ejhg.2011.48, 1:CAS:528:DC%2BC3MXpt1aksb0%3DPubMedCentralCrossRefPubMed
23.
go back to reference Cox HC, Lea RA, Bellis C et al (2012) A genome-wide analysis of ‘Bounty’ descendants implicates several novel variants in migraine susceptibility. Neurogenetics 13(3):261–266, 22678113, 10.1007/s10048-012-0325-xPubMedCentralCrossRefPubMed Cox HC, Lea RA, Bellis C et al (2012) A genome-wide analysis of ‘Bounty’ descendants implicates several novel variants in migraine susceptibility. Neurogenetics 13(3):261–266, 22678113, 10.1007/s10048-012-0325-xPubMedCentralCrossRefPubMed
24.
25.
go back to reference Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073, 10.1038/nature09534, 1:CAS:528:DC%2BC3cXhtlCjt7%2FICrossRefPubMed Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073, 10.1038/nature09534, 1:CAS:528:DC%2BC3cXhtlCjt7%2FICrossRefPubMed
26.
go back to reference Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276, 19684571, 10.1038/nature08250, 1:CAS:528:DC%2BD1MXpvFCktLg%3DPubMedCentralCrossRefPubMed Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276, 19684571, 10.1038/nature08250, 1:CAS:528:DC%2BD1MXpvFCktLg%3DPubMedCentralCrossRefPubMed
27.
go back to reference Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106(45):19096–19101, 19861545, 10.1073/pnas.0910672106, 1:CAS:528:DC%2BD1MXhsFGlsbnFPubMedCentralCrossRefPubMed Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106(45):19096–19101, 19861545, 10.1073/pnas.0910672106, 1:CAS:528:DC%2BD1MXhsFGlsbnFPubMedCentralCrossRefPubMed
28.
go back to reference Girard SL, Gauthier J, Noreau A et al (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43(9):860–863, 21743468, 10.1038/ng.886, 1:CAS:528:DC%2BC3MXos1OmtrY%3DCrossRefPubMed Girard SL, Gauthier J, Noreau A et al (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43(9):860–863, 21743468, 10.1038/ng.886, 1:CAS:528:DC%2BC3MXos1OmtrY%3DCrossRefPubMed
29.
go back to reference O’Roak BJ, Deriziotis P, Lee C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589, 21572417, 10.1038/ng.835PubMedCentralCrossRefPubMed O’Roak BJ, Deriziotis P, Lee C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589, 21572417, 10.1038/ng.835PubMedCentralCrossRefPubMed
30.
go back to reference Vissers LE, de Liqt J, Gilissen C et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112, 21076407, 10.1038/ng.712, 1:CAS:528:DC%2BC3cXhsVWmtbfECrossRefPubMed Vissers LE, de Liqt J, Gilissen C et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112, 21076407, 10.1038/ng.712, 1:CAS:528:DC%2BC3cXhsVWmtbfECrossRefPubMed
31.
go back to reference Mamanova L, Coffey AJ, Scott CE et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118, 20111037, 10.1038/nmeth.1419, 1:CAS:528:DC%2BC3cXht1Slurg%3DCrossRefPubMed Mamanova L, Coffey AJ, Scott CE et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118, 20111037, 10.1038/nmeth.1419, 1:CAS:528:DC%2BC3cXht1Slurg%3DCrossRefPubMed
32.
go back to reference Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68(5):857–864, 21145000, 10.1016/j.neuron.2010.11.036, 1:CAS:528:DC%2BC3cXhsFGhu73JPubMedCentralCrossRefPubMed Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68(5):857–864, 21145000, 10.1016/j.neuron.2010.11.036, 1:CAS:528:DC%2BC3cXhsFGhu73JPubMedCentralCrossRefPubMed
33.
go back to reference Bras J, Guerreiro R, Hardy J (2012) Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 13(7):453–464, 22714018, 10.1038/nrn3271, 1:CAS:528:DC%2BC38XovVagtrs%3DCrossRefPubMed Bras J, Guerreiro R, Hardy J (2012) Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 13(7):453–464, 22714018, 10.1038/nrn3271, 1:CAS:528:DC%2BC38XovVagtrs%3DCrossRefPubMed
34.
go back to reference Topper S, Ober C, Das S (2011) Exome sequencing and the genetics of intellectual disability. Clin Genet 80(2):117–126, 21627642, 10.1111/j.1399-0004.2011.01720.x, 1:STN:280:DC%2BC3MnnsFWjtg%3D%3DPubMedCentralCrossRefPubMed Topper S, Ober C, Das S (2011) Exome sequencing and the genetics of intellectual disability. Clin Genet 80(2):117–126, 21627642, 10.1111/j.1399-0004.2011.01720.x, 1:STN:280:DC%2BC3MnnsFWjtg%3D%3DPubMedCentralCrossRefPubMed
35.
go back to reference Majewski J, Schwartzentruber J, Lalonde E et al (2011) What can exome sequencing do for you? J Med Genet 48(9):580–589, 21730106, 10.1136/jmedgenet-2011-100223, 1:CAS:528:DC%2BC3MXhs1KjtrrNCrossRefPubMed Majewski J, Schwartzentruber J, Lalonde E et al (2011) What can exome sequencing do for you? J Med Genet 48(9):580–589, 21730106, 10.1136/jmedgenet-2011-100223, 1:CAS:528:DC%2BC3MXhs1KjtrrNCrossRefPubMed
36.
go back to reference Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425, 20479773, 10.1038/nrg2779, 1:CAS:528:DC%2BC3cXmtFCjtLw%3DCrossRefPubMed Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425, 20479773, 10.1038/nrg2779, 1:CAS:528:DC%2BC3cXmtFCjtLw%3DCrossRefPubMed
37.
go back to reference Lupski JR, Reid JG, Gonzaga-Jauregui C et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362(13):1181–1191, 20220177, 10.1056/NEJMoa0908094, 1:CAS:528:DC%2BC3cXkt1Cns7s%3DPubMedCentralCrossRefPubMed Lupski JR, Reid JG, Gonzaga-Jauregui C et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362(13):1181–1191, 20220177, 10.1056/NEJMoa0908094, 1:CAS:528:DC%2BC3cXkt1Cns7s%3DPubMedCentralCrossRefPubMed
38.
go back to reference Rios J, Stein E, Shendure J et al (2010) Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet 19(22):4313–4318, 20719861, 10.1093/hmg/ddq352, 1:CAS:528:DC%2BC3cXhtlaktrrPPubMedCentralCrossRefPubMed Rios J, Stein E, Shendure J et al (2010) Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet 19(22):4313–4318, 20719861, 10.1093/hmg/ddq352, 1:CAS:528:DC%2BC3cXhtlaktrrPPubMedCentralCrossRefPubMed
39.
go back to reference Clark MJ, Chen R, Lam HY et al (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29(10):908–914, 21947028, 10.1038/nbt.1975, 1:CAS:528:DC%2BC3MXht1anu73LPubMedCentralCrossRefPubMed Clark MJ, Chen R, Lam HY et al (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29(10):908–914, 21947028, 10.1038/nbt.1975, 1:CAS:528:DC%2BC3MXht1anu73LPubMedCentralCrossRefPubMed
40.
go back to reference Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 12:231, 21663684, 10.1186/1471-2105-12-231PubMedCentralCrossRefPubMed Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 12:231, 21663684, 10.1186/1471-2105-12-231PubMedCentralCrossRefPubMed
42.
go back to reference International HapMap Consortium (2003) The International HapMap Project. Nature 426(6968):789–796, 10.1038/nature02168CrossRef International HapMap Consortium (2003) The International HapMap Project. Nature 426(6968):789–796, 10.1038/nature02168CrossRef
43.
go back to reference Siu H, Zhu Y, Jin L et al (2011) Implication of next-generation sequencing on association studies. BMC Genomics 12:322, 21682891, 10.1186/1471-2164-12-322PubMedCentralCrossRefPubMed Siu H, Zhu Y, Jin L et al (2011) Implication of next-generation sequencing on association studies. BMC Genomics 12:322, 21682891, 10.1186/1471-2164-12-322PubMedCentralCrossRefPubMed
44.
go back to reference Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344, 18349094, 10.1001/jama.299.11.1335, 1:CAS:528:DC%2BD1cXjsV2ku7g%3DCrossRefPubMed Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344, 18349094, 10.1001/jama.299.11.1335, 1:CAS:528:DC%2BD1cXjsV2ku7g%3DCrossRefPubMed
45.
go back to reference Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398, 17522671, 10.1038/nature05913, 1:CAS:528:DC%2BD2sXlsFOgsrk%3DCrossRefPubMed Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398, 17522671, 10.1038/nature05913, 1:CAS:528:DC%2BD2sXlsFOgsrk%3DCrossRefPubMed
Metadata
Title
Future possibilities in migraine genetics
Authors
Laura Aviaja Rudkjobing
Ann-Louise Esserlind
Jes Olesen
Publication date
01-10-2012
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 7/2012
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1007/s10194-012-0481-2

Other articles of this Issue 7/2012

The Journal of Headache and Pain 7/2012 Go to the issue

Letter to the Editor

Reply to letter to editor