Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 4/2011

01-08-2011

TAK1 Expression in the Cochlea: A Specific Marker for Adult Supporting Cells

Authors: Mark A. Parker, Kevin Jiang, Judith S. Kempfle, Kunio Mizutari, Caitlin L. Simmons, Rebecca Bieber, Joe Adams, Albert S. B. Edge

Published in: Journal of the Association for Research in Otolaryngology | Issue 4/2011

Login to get access

Abstract

Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun N-terminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker’s organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters’ cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
Literature
go back to reference Alford BR, Ruben RJ (1963) Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Ann Otol Rhinol Laryngol 72:237–247PubMed Alford BR, Ruben RJ (1963) Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Ann Otol Rhinol Laryngol 72:237–247PubMed
go back to reference Batts SA, Shoemaker CR, Raphael Y (2009) Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hear Res 249(1–2):15–22PubMedCrossRef Batts SA, Shoemaker CR, Raphael Y (2009) Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hear Res 249(1–2):15–22PubMedCrossRef
go back to reference Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496(2):172–186PubMedCrossRef Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496(2):172–186PubMedCrossRef
go back to reference Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126(8):1581–1590PubMed Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126(8):1581–1590PubMed
go back to reference Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH et al (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci USA 105(47):18396–18401PubMedCrossRef Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH et al (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci USA 105(47):18396–18401PubMedCrossRef
go back to reference Davies D, Magnus C, Corwin JT (2007) Developmental changes in cell extracellular matrix interactions limit proliferation in the mammalian inner ear. Eur J Neurosci 25(4):985–998PubMedCrossRef Davies D, Magnus C, Corwin JT (2007) Developmental changes in cell extracellular matrix interactions limit proliferation in the mammalian inner ear. Eur J Neurosci 25(4):985–998PubMedCrossRef
go back to reference Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16(1):58–69PubMedCrossRef Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16(1):58–69PubMedCrossRef
go back to reference Driver EC, Kelley MW (2009) Specification of cell fate in the mammalian cochlea. Birth Defects Res C Embryo Today 87(3):212–221PubMedCrossRef Driver EC, Kelley MW (2009) Specification of cell fate in the mammalian cochlea. Birth Defects Res C Embryo Today 87(3):212–221PubMedCrossRef
go back to reference Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I (2010) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS ONE 5(2):e9377PubMedCrossRef Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I (2010) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS ONE 5(2):e9377PubMedCrossRef
go back to reference Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83(4):575–583PubMedCrossRef Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83(4):575–583PubMedCrossRef
go back to reference Glikeria G, Barbara W, Ulrike Z, Mark P, Karin R, Iris K et al (1999) Differential expression of trkB.T1 and trkB.T2, truncated trkC, and p75NGFR in the cochlea prior to hearing function. J Comp Neurol 414(1):33–49CrossRef Glikeria G, Barbara W, Ulrike Z, Mark P, Karin R, Iris K et al (1999) Differential expression of trkB.T1 and trkB.T2, truncated trkC, and p75NGFR in the cochlea prior to hearing function. J Comp Neurol 414(1):33–49CrossRef
go back to reference Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies GCR et al (2006) The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci 26(29):7659–7664PubMedCrossRef Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies GCR et al (2006) The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci 26(29):7659–7664PubMedCrossRef
go back to reference Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA (2009) Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 10(3):321–340PubMedCrossRef Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA (2009) Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 10(3):321–340PubMedCrossRef
go back to reference Hoffmann A, Preobrazhenska O, Wodarczyk C, Medler Y, Winkel A, Shahab S et al (2005) Transforming growth factor-I-activated kinase-1 (TAK1), a MAP3K, interacts with smad proteins and interferes with osteogenesis in murine mesenchymal progenitors. J Biol Chem 280(29):27271–27283PubMedCrossRef Hoffmann A, Preobrazhenska O, Wodarczyk C, Medler Y, Winkel A, Shahab S et al (2005) Transforming growth factor-I-activated kinase-1 (TAK1), a MAP3K, interacts with smad proteins and interferes with osteogenesis in murine mesenchymal progenitors. J Biol Chem 280(29):27271–27283PubMedCrossRef
go back to reference Hume CR, Bratt DL, Oesterle EC (2007) Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 7(7):798–807PubMedCrossRef Hume CR, Bratt DL, Oesterle EC (2007) Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 7(7):798–807PubMedCrossRef
go back to reference Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11(3):271–276PubMedCrossRef Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11(3):271–276PubMedCrossRef
go back to reference Jadrich JL, O'Connor MB, Coucouvanis E (2003) Expression of TAK1, a mediator of TGF-[beta] and BMP signaling, during mouse embryonic development. Gene Expr Patterns 3(2):131–134PubMedCrossRef Jadrich JL, O'Connor MB, Coucouvanis E (2003) Expression of TAK1, a mediator of TGF-[beta] and BMP signaling, during mouse embryonic development. Gene Expr Patterns 3(2):131–134PubMedCrossRef
go back to reference Jadrich JL, O'Connor MB, Coucouvanis E (2006) The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 133(8):1529–1541PubMedCrossRef Jadrich JL, O'Connor MB, Coucouvanis E (2006) The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 133(8):1529–1541PubMedCrossRef
go back to reference Kawamoto K, Ishimoto S-I, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23(11):4395–4400PubMed Kawamoto K, Ishimoto S-I, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23(11):4395–4400PubMed
go back to reference Kelley MW (2006) Hair cell development: commitment through differentiation. Brain Res 1091(1):172–185PubMedCrossRef Kelley MW (2006) Hair cell development: commitment through differentiation. Brain Res 1091(1):172–185PubMedCrossRef
go back to reference Kiernan AE, Pelling AL, Leung KKH, Tang ASP, Bell DM, Tease C et al (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035PubMedCrossRef Kiernan AE, Pelling AL, Leung KKH, Tang ASP, Bell DM, Tease C et al (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035PubMedCrossRef
go back to reference Kikuchi K, Hilding D (1965) The development of the organ of Corti in the mouse. Acta Otolaryngol 60(3):207–222PubMedCrossRef Kikuchi K, Hilding D (1965) The development of the organ of Corti in the mouse. Acta Otolaryngol 60(3):207–222PubMedCrossRef
go back to reference Kwan T, White PM, Segil N (2009) Development and regeneration of the inner ear. Ann NY Acad Sci 1170:28–33, International Symposium on Olfaction and TastePubMedCrossRef Kwan T, White PM, Segil N (2009) Development and regeneration of the inner ear. Ann NY Acad Sci 1170:28–33, International Symposium on Olfaction and TastePubMedCrossRef
go back to reference Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T et al (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21(3):289–292PubMedCrossRef Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T et al (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21(3):289–292PubMedCrossRef
go back to reference Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H et al (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294(3):415–420PubMedCrossRef Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H et al (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294(3):415–420PubMedCrossRef
go back to reference Mak AC, Szeto IY, Fritzsch B, Cheah KS (2009) Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr Patterns 9(6):444–453PubMedCrossRef Mak AC, Szeto IY, Fritzsch B, Cheah KS (2009) Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr Patterns 9(6):444–453PubMedCrossRef
go back to reference McCullar JS, Ty S, Campbell S, Oesterle EC (2010) Activin potentiates proliferation in mature avian auditory sensory epithelium. J Neurosci 30(2):478–490PubMedCrossRef McCullar JS, Ty S, Campbell S, Oesterle EC (2010) Activin potentiates proliferation in mature avian auditory sensory epithelium. J Neurosci 30(2):478–490PubMedCrossRef
go back to reference Montcouquiol M, Valat J, Travo C, Sans A (1998) A role for BDNF in early postnatal rat vestibular epithelia maturation: implication of supporting cells. Eur J Neurosci 10(2):598–606PubMedCrossRef Montcouquiol M, Valat J, Travo C, Sans A (1998) A role for BDNF in early postnatal rat vestibular epithelia maturation: implication of supporting cells. Eur J Neurosci 10(2):598–606PubMedCrossRef
go back to reference Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia 54(1):21–34PubMedCrossRef Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia 54(1):21–34PubMedCrossRef
go back to reference Murata J, Murayama A, Horii A, Doi K, Harada T, Okano H et al (2004) Expression of Musashi1, a neural RNA-binding protein, in the cochlea of young adult mice. Neurosci Lett 354(3):201–204PubMedCrossRef Murata J, Murayama A, Horii A, Doi K, Harada T, Okano H et al (2004) Expression of Musashi1, a neural RNA-binding protein, in the cochlea of young adult mice. Neurosci Lett 354(3):201–204PubMedCrossRef
go back to reference Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9(1):65–89PubMedCrossRef Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9(1):65–89PubMedCrossRef
go back to reference Parker MA (2011) Biotechnology in the treatment of hearing loss: foundations and Future of hair cell regeneration. Journal of Speech, Lanuage and Hearing Research (in press) Parker MA (2011) Biotechnology in the treatment of hearing loss: foundations and Future of hair cell regeneration. Journal of Speech, Lanuage and Hearing Research (in press)
go back to reference Parker MA, Cotanche DA (2004) The potential use of stem cells for cochlear repair. Audiol Neurootol 9(2):72–80PubMedCrossRef Parker MA, Cotanche DA (2004) The potential use of stem cells for cochlear repair. Audiol Neurootol 9(2):72–80PubMedCrossRef
go back to reference Parker M, Brugeaud A, Edge AS. J Vis Exp. (2010) Feb 4; Primary culture and plasmid electroporation of the murine organ of Corti. (36). pii: 1685. doi:10.3791/1685 Parker M, Brugeaud A, Edge AS. J Vis Exp. (2010) Feb 4; Primary culture and plasmid electroporation of the murine organ of Corti. (36). pii: 1685. doi:10.​3791/​1685
go back to reference Pujol R, Hilding D (1973) Anatomy and physiology of the onset of auditory function. Acta Otolaryngol 76(1):1–10PubMedCrossRef Pujol R, Hilding D (1973) Anatomy and physiology of the onset of auditory function. Acta Otolaryngol 76(1):1–10PubMedCrossRef
go back to reference Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30(2):714–722PubMedCrossRef Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30(2):714–722PubMedCrossRef
go back to reference Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60(5–6):397–422PubMedCrossRef Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60(5–6):397–422PubMedCrossRef
go back to reference Raphael Y, Kim YH, Osumi Y, Izumikawa M (2007) Non-sensory cells in the deafened organ of Corti: approaches for repair. Int J Dev Biol 51(6–7):649–654PubMedCrossRef Raphael Y, Kim YH, Osumi Y, Izumikawa M (2007) Non-sensory cells in the deafened organ of Corti: approaches for repair. Int J Dev Biol 51(6–7):649–654PubMedCrossRef
go back to reference Rio C, Dikkes P, Liberman MC, Corfas G (2002) Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 442(2):156–162PubMedCrossRef Rio C, Dikkes P, Liberman MC, Corfas G (2002) Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 442(2):156–162PubMedCrossRef
go back to reference Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, Corey DP et al (2006) Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci 103(19):7345–7350PubMedCrossRef Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, Corey DP et al (2006) Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci 103(19):7345–7350PubMedCrossRef
go back to reference Sajan SA, Warchol ME, Lovett M (2007b) Toward a systems biology of mouse inner ear organogenesis: gene expression pathways, patterns and network analysis. Genetics 177(1):631–653PubMedCrossRef Sajan SA, Warchol ME, Lovett M (2007b) Toward a systems biology of mouse inner ear organogenesis: gene expression pathways, patterns and network analysis. Genetics 177(1):631–653PubMedCrossRef
go back to reference Sakurai H, Nishi A, Sato N, Mizukami J, Miyoshi H, Sugita T (2002) TAK1-TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-[kappa]B signaling pathways. Biochem Biophys Res Commun 297(5):1277–1281PubMedCrossRef Sakurai H, Nishi A, Sato N, Mizukami J, Miyoshi H, Sugita T (2002) TAK1-TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-[kappa]B signaling pathways. Biochem Biophys Res Commun 297(5):1277–1281PubMedCrossRef
go back to reference Santos-Sacchi J, Dallos P (1983) Intercellular communication in the supporting cells of the organ of Corti. Hear Res 9(3):317–326PubMedCrossRef Santos-Sacchi J, Dallos P (1983) Intercellular communication in the supporting cells of the organ of Corti. Hear Res 9(3):317–326PubMedCrossRef
go back to reference Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095PubMedCrossRef Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095PubMedCrossRef
go back to reference Schmid P, Cox D, Bilbe G, Maier R, McMaster GK (1991) Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development 111(1):117–130PubMed Schmid P, Cox D, Bilbe G, Maier R, McMaster GK (1991) Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development 111(1):117–130PubMed
go back to reference Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS et al (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19(22):2668–2681PubMedCrossRef Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS et al (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19(22):2668–2681PubMedCrossRef
go back to reference Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B et al (2009) TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28(14):2028–2041PubMedCrossRef Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B et al (2009) TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28(14):2028–2041PubMedCrossRef
go back to reference So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT et al (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9(3):290–306PubMedCrossRef So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT et al (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9(3):290–306PubMedCrossRef
go back to reference Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC et al (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24(40):8651–8661PubMedCrossRef Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC et al (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24(40):8651–8661PubMedCrossRef
go back to reference Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 51(6–7):633–647PubMedCrossRef Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 51(6–7):633–647PubMedCrossRef
go back to reference Tang M, Wei X, Guo Y, Breslin P, Zhang S, Wei W et al (2008) TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 205(7):1611–1619PubMedCrossRef Tang M, Wei X, Guo Y, Breslin P, Zhang S, Wei W et al (2008) TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 205(7):1611–1619PubMedCrossRef
go back to reference Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74PubMedCrossRef Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74PubMedCrossRef
go back to reference Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55PubMedCrossRef Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55PubMedCrossRef
go back to reference Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21PubMedCrossRef Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21PubMedCrossRef
go back to reference Warchol ME (1999) Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery. J Neurocytol 28(10–11):889–900PubMedCrossRef Warchol ME (1999) Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery. J Neurocytol 28(10–11):889–900PubMedCrossRef
go back to reference Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-b signal transduction. Science 270(5244):2008–2011PubMedCrossRef Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-b signal transduction. Science 270(5244):2008–2011PubMedCrossRef
go back to reference Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology 24(5):307–316PubMedCrossRef Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology 24(5):307–316PubMedCrossRef
go back to reference Zhang S-X (1999) An atlas of histology, 1st edn. Springer, Berlin Zhang S-X (1999) An atlas of histology, 1st edn. Springer, Berlin
go back to reference Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3(6):580–586PubMedCrossRef Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3(6):580–586PubMedCrossRef
go back to reference Zou J, Pyykkö I, Sutinen P, Toppila E (2005) Vibration induced hearing loss in guinea pig cochlea: expression of TNF-[alpha] and VEGF. Hear Res 202(1–2):13–20PubMedCrossRef Zou J, Pyykkö I, Sutinen P, Toppila E (2005) Vibration induced hearing loss in guinea pig cochlea: expression of TNF-[alpha] and VEGF. Hear Res 202(1–2):13–20PubMedCrossRef
Metadata
Title
TAK1 Expression in the Cochlea: A Specific Marker for Adult Supporting Cells
Authors
Mark A. Parker
Kevin Jiang
Judith S. Kempfle
Kunio Mizutari
Caitlin L. Simmons
Rebecca Bieber
Joe Adams
Albert S. B. Edge
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 4/2011
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-011-0265-4

Other articles of this Issue 4/2011

Journal of the Association for Research in Otolaryngology 4/2011 Go to the issue