Skip to main content
Top
Published in: Clinical and Experimental Nephrology 4/2015

01-08-2015 | Review Article

Mineral and bone disorders in kidney transplant recipients: reversible, irreversible, and de novo abnormalities

Authors: Takashi Hirukawa, Takatoshi Kakuta, Michio Nakamura, Masafumi Fukagawa

Published in: Clinical and Experimental Nephrology | Issue 4/2015

Login to get access

Abstract

Given the advances in medical technologies related to kidney transplantation, the post-transplant graft survival rate and quality of life have improved dramatically. Nevertheless, post-transplant mortality rate still remains high as compared to the general population due to the development of cardiovascular events. It has recently been widely recognized that chronic kidney disease-mineral and bone disorders (CKD-MBD) significantly contribute to such poor prognosis at least in part. In the majority of kidney recipients, abnormal serum parameters for mineral and bone disorder (MBD), such as phosphorus, calcium, 1,25-dihydroxyvitamin D, parathyroid hormone and fibroblast growth factor 23, gradually return toward acceptable levels following the re-establishment of kidney function after transplantation; however, some irreversible abnormalities, developed as the result of long-term dialysis, persist, require treatment, or even progress after kidney transplantation. Thus, better management of CKD-MBD during pre-dialysis and dialysis period as well as after kidney transplantation is highly appreciated.
Literature
1.
go back to reference KDIGO Clinical Practice Guideline for the Diagnosis. Evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl. 113):S1–130. KDIGO Clinical Practice Guideline for the Diagnosis. Evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl. 113):S1–130.
2.
go back to reference Fukagwa M, Yokoyama K, Koiwa F, et al. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorders. Ther Apher Dial. 2013;17:247–88.CrossRef Fukagwa M, Yokoyama K, Koiwa F, et al. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorders. Ther Apher Dial. 2013;17:247–88.CrossRef
3.
go back to reference Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.PubMedCentralPubMed Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.PubMedCentralPubMed
4.
go back to reference Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.PubMedCentralCrossRefPubMed Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.PubMedCentralCrossRefPubMed
5.
go back to reference Ryan ZC, Ketha H, McNulty MS, et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA. 2013;110:6199–204.PubMedCentralCrossRefPubMed Ryan ZC, Ketha H, McNulty MS, et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA. 2013;110:6199–204.PubMedCentralCrossRefPubMed
7.
go back to reference Li X, Warmington KS, Niu QT, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25:2647–56.CrossRefPubMed Li X, Warmington KS, Niu QT, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25:2647–56.CrossRefPubMed
8.
go back to reference Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.CrossRefPubMed Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.CrossRefPubMed
9.
go back to reference Tominaga Y, Tanaka Y, Sato K, et al. Histopathology, pathophysiology, and indications for surgical treatment of renal hyperparathyroidism. Semin Surg Oncol. 1997;13:78–86.CrossRefPubMed Tominaga Y, Tanaka Y, Sato K, et al. Histopathology, pathophysiology, and indications for surgical treatment of renal hyperparathyroidism. Semin Surg Oncol. 1997;13:78–86.CrossRefPubMed
10.
go back to reference Sprague SM, Belozeroff V, Danese MD, et al. Abnormal bone and mineral metabolism in kidney transplant patients—a review. Am J Nephrol. 2008;28:246–53.CrossRefPubMed Sprague SM, Belozeroff V, Danese MD, et al. Abnormal bone and mineral metabolism in kidney transplant patients—a review. Am J Nephrol. 2008;28:246–53.CrossRefPubMed
11.
go back to reference Copley JB, Wuthrich RP. Therapeutic management of post kidney transplant hyperparathyroidism. Clin Transplant. 2011;25:24–39.CrossRefPubMed Copley JB, Wuthrich RP. Therapeutic management of post kidney transplant hyperparathyroidism. Clin Transplant. 2011;25:24–39.CrossRefPubMed
12.
go back to reference Saha HH, Salmela KT, Ahonen PJ, et al. Sequential changes in vitamin D and calcium metabolism after successful renal transplantation. Scand J Urol Nephrol. 1994;28:21–7.CrossRefPubMed Saha HH, Salmela KT, Ahonen PJ, et al. Sequential changes in vitamin D and calcium metabolism after successful renal transplantation. Scand J Urol Nephrol. 1994;28:21–7.CrossRefPubMed
13.
go back to reference Casez JP, Lippuner K, Horber FF, et al. Changes in bone mineral density over 18 months following kidney transplantation: the respective roles of prednisone and parathyroid hormone. Nephrol Dial Transplant. 2002;17:1318–26.CrossRefPubMed Casez JP, Lippuner K, Horber FF, et al. Changes in bone mineral density over 18 months following kidney transplantation: the respective roles of prednisone and parathyroid hormone. Nephrol Dial Transplant. 2002;17:1318–26.CrossRefPubMed
14.
go back to reference Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Protect Nephrol. 2006;2:136–48.CrossRef Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Protect Nephrol. 2006;2:136–48.CrossRef
15.
go back to reference Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol. 2002;13:551–8.PubMed Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol. 2002;13:551–8.PubMed
16.
go back to reference Bhan I, Shah A, Holmes J, et al. Post-transplant hypophosphatemia: tertiary ‘hyper-phosphatonism’? Kidney Int. 2006;70:1486–96.CrossRefPubMed Bhan I, Shah A, Holmes J, et al. Post-transplant hypophosphatemia: tertiary ‘hyper-phosphatonism’? Kidney Int. 2006;70:1486–96.CrossRefPubMed
17.
go back to reference Kawarazaki Hiroo, Shibagaki Yugo, Fukumoto Seiji, et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: a one-year prospective observational study. Ther Apher Dial. 2011;15:481–7.CrossRefPubMed Kawarazaki Hiroo, Shibagaki Yugo, Fukumoto Seiji, et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: a one-year prospective observational study. Ther Apher Dial. 2011;15:481–7.CrossRefPubMed
18.
go back to reference Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19:1281–7.CrossRefPubMed Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19:1281–7.CrossRefPubMed
19.
go back to reference Cundy T, Kanis JA, Heynen G, et al. Calcium metabolism and hyperparathyroidism after renal transplantation. Q J Med. 1983;52:67.PubMed Cundy T, Kanis JA, Heynen G, et al. Calcium metabolism and hyperparathyroidism after renal transplantation. Q J Med. 1983;52:67.PubMed
20.
go back to reference Roe SD, Porter CJ, Godber IM, et al. Reduced bone mineral density in male renal transplant recipients: evidence for persisting hyperparathyroidism. Osteoporos Int. 2005;16:142.CrossRefPubMed Roe SD, Porter CJ, Godber IM, et al. Reduced bone mineral density in male renal transplant recipients: evidence for persisting hyperparathyroidism. Osteoporos Int. 2005;16:142.CrossRefPubMed
21.
go back to reference Iwasaki Y, Yamato H, Nii-Kono T, et al. Insufficiency of PTH action of bone in uremia. Kidney Int. 2006;70:S34.CrossRef Iwasaki Y, Yamato H, Nii-Kono T, et al. Insufficiency of PTH action of bone in uremia. Kidney Int. 2006;70:S34.CrossRef
22.
go back to reference Evenepoel P, Naesens M, Claes K, et al. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant. 2007;7:1193–2000.CrossRefPubMed Evenepoel P, Naesens M, Claes K, et al. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant. 2007;7:1193–2000.CrossRefPubMed
23.
go back to reference de Sevaux RG, Hoitsma AJ, van Hoof HJ, et al. Abnormal vitamin D metabolism and loss of bone mass after renal transplantation. Nephron Clin Pract. 2003;93:C21–8.CrossRefPubMed de Sevaux RG, Hoitsma AJ, van Hoof HJ, et al. Abnormal vitamin D metabolism and loss of bone mass after renal transplantation. Nephron Clin Pract. 2003;93:C21–8.CrossRefPubMed
24.
go back to reference Bagni B, Gilli P, Cavallini A, et al. Continuing loss of vertebral mineral density in renal transplant recipients. Eur J Nucl Med. 1994;21:108–12.CrossRefPubMed Bagni B, Gilli P, Cavallini A, et al. Continuing loss of vertebral mineral density in renal transplant recipients. Eur J Nucl Med. 1994;21:108–12.CrossRefPubMed
25.
go back to reference Taniguchi M, Tokumoto M, Matsuo D, et al. Persistent hyperparathyroidism in renal allograft recipients:vitamin D receptor, calcium-sensing receptor, and apoptosis. Kidney Int. 2006;70:363–70.CrossRefPubMed Taniguchi M, Tokumoto M, Matsuo D, et al. Persistent hyperparathyroidism in renal allograft recipients:vitamin D receptor, calcium-sensing receptor, and apoptosis. Kidney Int. 2006;70:363–70.CrossRefPubMed
26.
go back to reference Komaba H, Koizumi M, Fukagawa M. Parathyroid resistance to FGF23 in kidney transplant recipients: back to the past or ahead to the future? Kidney Int. 2010;78:953–5.CrossRefPubMed Komaba H, Koizumi M, Fukagawa M. Parathyroid resistance to FGF23 in kidney transplant recipients: back to the past or ahead to the future? Kidney Int. 2010;78:953–5.CrossRefPubMed
27.
go back to reference Nakamura M, Tanaka K, Marui Y, et al. Clinicopathological analysis of persistent hypercalcemia and hyperparathyroidism after kidney transplantation in long-term dialysis patients. Ther Apher Dial. 2013;17:551–6.PubMed Nakamura M, Tanaka K, Marui Y, et al. Clinicopathological analysis of persistent hypercalcemia and hyperparathyroidism after kidney transplantation in long-term dialysis patients. Ther Apher Dial. 2013;17:551–6.PubMed
28.
go back to reference Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33:191–203.CrossRefPubMed Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33:191–203.CrossRefPubMed
29.
go back to reference Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1(NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;2:889–901.CrossRef Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1(NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;2:889–901.CrossRef
30.
go back to reference Yeo H, Beck LH, McDonald JM, et al. Cyclosporin a elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Bone. 2007;40:1502–16.PubMedCentralCrossRefPubMed Yeo H, Beck LH, McDonald JM, et al. Cyclosporin a elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Bone. 2007;40:1502–16.PubMedCentralCrossRefPubMed
31.
go back to reference Aroldi A, Tarantino A, Montagnino G, et al. Effects of three immunosuppressive regimens on vertebral bone density in renal transplant recipients: a prospective study. Transplant. 1997;63:380–6.CrossRef Aroldi A, Tarantino A, Montagnino G, et al. Effects of three immunosuppressive regimens on vertebral bone density in renal transplant recipients: a prospective study. Transplant. 1997;63:380–6.CrossRef
32.
go back to reference Singha UK, Jiang Y, Yu S, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem. 2008;103:434–46.CrossRefPubMed Singha UK, Jiang Y, Yu S, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem. 2008;103:434–46.CrossRefPubMed
33.
go back to reference Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.CrossRefPubMed Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.CrossRefPubMed
34.
go back to reference Kunzendorf U, Kramer BK, Arns W, et al. Bone disease after renal transplantation. Nephrol Dial Transplant. 2008;23:450–8.CrossRefPubMed Kunzendorf U, Kramer BK, Arns W, et al. Bone disease after renal transplantation. Nephrol Dial Transplant. 2008;23:450–8.CrossRefPubMed
35.
go back to reference Hahn TJ, Halstead LR, Baran DT, et al. Effects off short term glucocorticoid administration on interstitial calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981;52:111–5.CrossRefPubMed Hahn TJ, Halstead LR, Baran DT, et al. Effects off short term glucocorticoid administration on interstitial calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981;52:111–5.CrossRefPubMed
36.
go back to reference Nikkel EL, Mohan S, Zhang A, et al. Reduced fracture risk with early corticosteroid withdrawal after kidney transplant. Am J Transplant. 2012;12:649–59.PubMedCentralCrossRefPubMed Nikkel EL, Mohan S, Zhang A, et al. Reduced fracture risk with early corticosteroid withdrawal after kidney transplant. Am J Transplant. 2012;12:649–59.PubMedCentralCrossRefPubMed
37.
go back to reference Lehman G, Ott U, Stein G, et al. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39:3153–8.CrossRef Lehman G, Ott U, Stein G, et al. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39:3153–8.CrossRef
38.
go back to reference Monier-Faugere MC, Mawad H, Qi Q, et al. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J Am Soc Nephrol. 2000;11:1093–9.PubMed Monier-Faugere MC, Mawad H, Qi Q, et al. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J Am Soc Nephrol. 2000;11:1093–9.PubMed
39.
go back to reference Weisinger JR, Carlini RG, Rojas E, et al. Bone disease after renal transplantation. Clin J Am Nephrol. 2006;6:1300–13.CrossRef Weisinger JR, Carlini RG, Rojas E, et al. Bone disease after renal transplantation. Clin J Am Nephrol. 2006;6:1300–13.CrossRef
40.
go back to reference Zhang R, Chouhan KK, et al. Metabolic bone diseases in kidney transplant recipients. World J Nephrol. 2012;6:127–33.CrossRef Zhang R, Chouhan KK, et al. Metabolic bone diseases in kidney transplant recipients. World J Nephrol. 2012;6:127–33.CrossRef
41.
go back to reference Brandenburg VM, Politt D, Ketteler M, et al. Early rapid loss followed by long-term consolidation characterizes the development of lumbar bone mineral density after kidney transplantation. Transplant. 2004;77:1566–71.CrossRef Brandenburg VM, Politt D, Ketteler M, et al. Early rapid loss followed by long-term consolidation characterizes the development of lumbar bone mineral density after kidney transplantation. Transplant. 2004;77:1566–71.CrossRef
42.
go back to reference Zisman AL, Sprague SM, et al. Bone disease after kidney transplantation. Adv Chronic Kidney Dis. 2006;13:35–46.CrossRefPubMed Zisman AL, Sprague SM, et al. Bone disease after kidney transplantation. Adv Chronic Kidney Dis. 2006;13:35–46.CrossRefPubMed
43.
go back to reference Stenman-Bareen CO, Sherrard DJ, Alem AM, et al. Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:2200–5.CrossRef Stenman-Bareen CO, Sherrard DJ, Alem AM, et al. Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:2200–5.CrossRef
44.
go back to reference Abbott KC, Oglesby RJ, Hypolite IO, et al. Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol. 2001;11:450–7.CrossRefPubMed Abbott KC, Oglesby RJ, Hypolite IO, et al. Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol. 2001;11:450–7.CrossRefPubMed
45.
go back to reference Ball AM, Gillen DL, Sherrard D, et al. Risk of hip fracture among dialysis and renal transplant recipients. Jam. 2002;18:3014–8.CrossRef Ball AM, Gillen DL, Sherrard D, et al. Risk of hip fracture among dialysis and renal transplant recipients. Jam. 2002;18:3014–8.CrossRef
46.
go back to reference Malyszko J, Malyszko JS, Pawlak K, et al. Tartrate-resistant acid phosphatase 5b and its correlations with other markers of bone metabolism in kidney transplant recipients and dialyzed patients. Adv Med Sci. 2006;51:69–72.PubMed Malyszko J, Malyszko JS, Pawlak K, et al. Tartrate-resistant acid phosphatase 5b and its correlations with other markers of bone metabolism in kidney transplant recipients and dialyzed patients. Adv Med Sci. 2006;51:69–72.PubMed
47.
go back to reference Gupta AK, Huang M, Prasad GV. Determinants of bone mineral density in stable kidney transplant recipients. J Nephrol. 2012;25:373–83.CrossRefPubMed Gupta AK, Huang M, Prasad GV. Determinants of bone mineral density in stable kidney transplant recipients. J Nephrol. 2012;25:373–83.CrossRefPubMed
48.
go back to reference Malyszko J, Wlczynski S, Malyszko JS, et al. Correlations of new markers of bone formation and resorption in kidney transplant recipients. Transplant Proc. 2003;35:1351–4.CrossRefPubMed Malyszko J, Wlczynski S, Malyszko JS, et al. Correlations of new markers of bone formation and resorption in kidney transplant recipients. Transplant Proc. 2003;35:1351–4.CrossRefPubMed
49.
go back to reference Bozkaya G, Nart A, Uslu A, et al. Impact of calcineurin inhibitors on bone metabolism in primary kidney transplant patients. Transplant Proc. 2008;40:151–5.CrossRefPubMed Bozkaya G, Nart A, Uslu A, et al. Impact of calcineurin inhibitors on bone metabolism in primary kidney transplant patients. Transplant Proc. 2008;40:151–5.CrossRefPubMed
50.
go back to reference Cruz DN, Wysolmerski JJ, Brickel HM, et al. Parameters of high bone-turnover predict bone loss in renal transplant patients: a longitudinal study. Transplant. 2001;15:83–8.CrossRef Cruz DN, Wysolmerski JJ, Brickel HM, et al. Parameters of high bone-turnover predict bone loss in renal transplant patients: a longitudinal study. Transplant. 2001;15:83–8.CrossRef
51.
go back to reference Kanaan N, Claes K, Devogelaer JP, et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol. 2010;5:1887–92.PubMedCentralCrossRefPubMed Kanaan N, Claes K, Devogelaer JP, et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol. 2010;5:1887–92.PubMedCentralCrossRefPubMed
52.
go back to reference Cianciolo G, Capelli I, Angelini ML, et al. Importance of vascular calcification in kidney transplant recipients. Am J Nephrol. 2014;39:418–26.CrossRefPubMed Cianciolo G, Capelli I, Angelini ML, et al. Importance of vascular calcification in kidney transplant recipients. Am J Nephrol. 2014;39:418–26.CrossRefPubMed
53.
go back to reference Hernandez D, Rufino M, Bartolomei S, et al. Clinical impact of preexisting vascular calcifications on mortality after renal transplantation. Kidney Int. 2005;67:2015–20.CrossRefPubMed Hernandez D, Rufino M, Bartolomei S, et al. Clinical impact of preexisting vascular calcifications on mortality after renal transplantation. Kidney Int. 2005;67:2015–20.CrossRefPubMed
54.
go back to reference Nguyen PT, Henrard S, Cohoe E, et al. Coronary artery calcification: a strong predictor of cardiovascular events in renal transplant recipients. Nephrol Dial Transplant. 2010;25:3773–8.CrossRefPubMed Nguyen PT, Henrard S, Cohoe E, et al. Coronary artery calcification: a strong predictor of cardiovascular events in renal transplant recipients. Nephrol Dial Transplant. 2010;25:3773–8.CrossRefPubMed
55.
go back to reference Egbuna O, Taylor J, Buchinsky D, et al. Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure. Clin Transplant. 2007;21:558–66.CrossRefPubMed Egbuna O, Taylor J, Buchinsky D, et al. Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure. Clin Transplant. 2007;21:558–66.CrossRefPubMed
56.
go back to reference Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24:179–89.CrossRefPubMed Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24:179–89.CrossRefPubMed
57.
go back to reference Moe SM, O’Neill KD, Resleravasa M, et al. Natural history of vascular calcification in dialysis and transplantation patients. Nephrol Dial Transplant. 2004;19:2387–793.CrossRefPubMed Moe SM, O’Neill KD, Resleravasa M, et al. Natural history of vascular calcification in dialysis and transplantation patients. Nephrol Dial Transplant. 2004;19:2387–793.CrossRefPubMed
58.
go back to reference Mazzaferro S, Pasquali M, Taggi F, et al. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin J Am Soc Nephrol. 2009;4:685–90.PubMedCentralCrossRefPubMed Mazzaferro S, Pasquali M, Taggi F, et al. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin J Am Soc Nephrol. 2009;4:685–90.PubMedCentralCrossRefPubMed
59.
go back to reference DeLoach SS, Joffe MM, Mai X, et al. Aortic calcification predicts cardiovascular events and all-cause mortality in renal transplantation. Nephrol Dial Transplant. 2009;24:1314–9.PubMedCentralCrossRefPubMed DeLoach SS, Joffe MM, Mai X, et al. Aortic calcification predicts cardiovascular events and all-cause mortality in renal transplantation. Nephrol Dial Transplant. 2009;24:1314–9.PubMedCentralCrossRefPubMed
60.
go back to reference Marechal C, Coche E, Goffin E, et al. Progression of coronary artery calcification and thoracic aorta calcification in kidney transplant recipients. Am J Kidney Dis. 2012;59:258–69.CrossRefPubMed Marechal C, Coche E, Goffin E, et al. Progression of coronary artery calcification and thoracic aorta calcification in kidney transplant recipients. Am J Kidney Dis. 2012;59:258–69.CrossRefPubMed
61.
go back to reference Wolf M, Molnar MZ, Amaral AP, et al. Elevated fibroblast growth factor 23 is risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011;22:956–66.PubMedCentralCrossRefPubMed Wolf M, Molnar MZ, Amaral AP, et al. Elevated fibroblast growth factor 23 is risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011;22:956–66.PubMedCentralCrossRefPubMed
63.
go back to reference Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.PubMedCentralPubMed Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.PubMedCentralPubMed
64.
go back to reference Bellows CG, Reimers SM, Heersche JN, et al. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res. 1999;297:249–59.CrossRefPubMed Bellows CG, Reimers SM, Heersche JN, et al. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res. 1999;297:249–59.CrossRefPubMed
65.
go back to reference Cunningham J, Danese M, Olson K, et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.CrossRefPubMed Cunningham J, Danese M, Olson K, et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.CrossRefPubMed
66.
go back to reference Bergua C, Torregrosa JV, Gutierrez-Dalmau A, et al. Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism. Transplant. 2008;86:413–7.CrossRef Bergua C, Torregrosa JV, Gutierrez-Dalmau A, et al. Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism. Transplant. 2008;86:413–7.CrossRef
67.
go back to reference Fleseriu M, Licata AA. Failure of successful renal transplant to produce appropriate levels of 1,25-dihydroxyvitamin D. Osteoporos Int. 2007;18:363–8.CrossRefPubMed Fleseriu M, Licata AA. Failure of successful renal transplant to produce appropriate levels of 1,25-dihydroxyvitamin D. Osteoporos Int. 2007;18:363–8.CrossRefPubMed
68.
go back to reference Torres A, Garcia S, Gonzalez A, et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004;65:705–12.CrossRefPubMed Torres A, Garcia S, Gonzalez A, et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004;65:705–12.CrossRefPubMed
69.
go back to reference El-Agroudy AE, El-Husseini AA, El-Sayed M, et al. Preventing bone loss in renal transplant recipients with vitamin D. J Am Soc Nephrol. 2003;14:2975–9.CrossRefPubMed El-Agroudy AE, El-Husseini AA, El-Sayed M, et al. Preventing bone loss in renal transplant recipients with vitamin D. J Am Soc Nephrol. 2003;14:2975–9.CrossRefPubMed
70.
go back to reference Chadban S, Chan M, Fry K, et al. The CARI guidelines. Nutritional management of hypophosphataemia in adult kidney transplant recipients. Nephrology (Carlton). 2010;15:S48–51.CrossRef Chadban S, Chan M, Fry K, et al. The CARI guidelines. Nutritional management of hypophosphataemia in adult kidney transplant recipients. Nephrology (Carlton). 2010;15:S48–51.CrossRef
71.
go back to reference Ambuhl PM, Meier D, Wolf B, et al. Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation: impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis. 1999;34:875–83.CrossRefPubMed Ambuhl PM, Meier D, Wolf B, et al. Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation: impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis. 1999;34:875–83.CrossRefPubMed
72.
go back to reference Riella LV, Rennke HG, Grafals M, et al. Hypophosphatemia in kidney transplant recipients: report of acute phosphate nephropathy as a complication of therapy. Am J Kidney Dis. 2011;57:641–5.CrossRefPubMed Riella LV, Rennke HG, Grafals M, et al. Hypophosphatemia in kidney transplant recipients: report of acute phosphate nephropathy as a complication of therapy. Am J Kidney Dis. 2011;57:641–5.CrossRefPubMed
73.
go back to reference Caravaca F, Fernandez MA, Ruiz-Calero R, et al. Effects of oral phosphorus supplementation on mineral metabolism of renal transplant recipients. Nephrol Dial Transplant. 1998;13:2605–11.CrossRefPubMed Caravaca F, Fernandez MA, Ruiz-Calero R, et al. Effects of oral phosphorus supplementation on mineral metabolism of renal transplant recipients. Nephrol Dial Transplant. 1998;13:2605–11.CrossRefPubMed
74.
go back to reference Balal M, Paydas S, Seyrek N, et al. Dipyridamole for renal phosphate leak in successfully renal transplanted hypophosphatemic patients. Clin Nephrol. 2005;63:87–91.CrossRefPubMed Balal M, Paydas S, Seyrek N, et al. Dipyridamole for renal phosphate leak in successfully renal transplanted hypophosphatemic patients. Clin Nephrol. 2005;63:87–91.CrossRefPubMed
75.
go back to reference Felsenfeld AJ, Levine BS. Approach to treatment of hypophosphatemia. Am J Kidney Dis. 2012;60:655–61.CrossRefPubMed Felsenfeld AJ, Levine BS. Approach to treatment of hypophosphatemia. Am J Kidney Dis. 2012;60:655–61.CrossRefPubMed
76.
go back to reference Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97.PubMedCentralCrossRefPubMed Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97.PubMedCentralCrossRefPubMed
77.
go back to reference Kruse AE, Eisenberger U, Frey FJ, et al. Effect of cinacalcet cessation in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2007;22:2362–5.CrossRefPubMed Kruse AE, Eisenberger U, Frey FJ, et al. Effect of cinacalcet cessation in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2007;22:2362–5.CrossRefPubMed
78.
go back to reference Kruse AE, Eisenberger U, Frey FJ, et al. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1311–4.CrossRefPubMed Kruse AE, Eisenberger U, Frey FJ, et al. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1311–4.CrossRefPubMed
79.
go back to reference Serra AL, Savoca R, Huber AR, et al. Effective control of persistent hyperparathyroidism with cinacalcet in renal allograft recipients. Nephrol Dial Transplant. 2007;22:577–83.CrossRefPubMed Serra AL, Savoca R, Huber AR, et al. Effective control of persistent hyperparathyroidism with cinacalcet in renal allograft recipients. Nephrol Dial Transplant. 2007;22:577–83.CrossRefPubMed
80.
go back to reference Serra AL, Schwarz AA, Wick FH, et al. Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1315–9.CrossRefPubMed Serra AL, Schwarz AA, Wick FH, et al. Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1315–9.CrossRefPubMed
81.
go back to reference Srinivas TR, Schold JD, Wormer KL, et al. Improvement in hypercalcemia with cinacalcet after kidney transplantation. Clin J Am Soc Nephrol. 2006;1:323–6.CrossRefPubMed Srinivas TR, Schold JD, Wormer KL, et al. Improvement in hypercalcemia with cinacalcet after kidney transplantation. Clin J Am Soc Nephrol. 2006;1:323–6.CrossRefPubMed
82.
go back to reference Leca N, Laftavi M, Gundroo A, et al. Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet. Am J Transplant. 2006;6:2391–5.CrossRefPubMed Leca N, Laftavi M, Gundroo A, et al. Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet. Am J Transplant. 2006;6:2391–5.CrossRefPubMed
83.
go back to reference Schwarz A, Rustien G, Merkel S, et al. Decreased renal transplant function after parathyroidectomy. Nephrol Dial Transplant. 2007;22:584–91.CrossRefPubMed Schwarz A, Rustien G, Merkel S, et al. Decreased renal transplant function after parathyroidectomy. Nephrol Dial Transplant. 2007;22:584–91.CrossRefPubMed
84.
go back to reference Kandil E, Florman S, Alabbas H, et al. Exploring the effect of parathyroidectomy for tertiary hyperparathyroidism after kidney transplantation. Am J Med Sci. 2010;339:420–4.PubMedCentralPubMed Kandil E, Florman S, Alabbas H, et al. Exploring the effect of parathyroidectomy for tertiary hyperparathyroidism after kidney transplantation. Am J Med Sci. 2010;339:420–4.PubMedCentralPubMed
85.
go back to reference Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Eng J Med. 2003;349:1207–15.CrossRef Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Eng J Med. 2003;349:1207–15.CrossRef
86.
go back to reference Cejka D, Benesch T, Krestan C, et al. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008;8:1864–70.CrossRefPubMed Cejka D, Benesch T, Krestan C, et al. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008;8:1864–70.CrossRefPubMed
87.
go back to reference Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.CrossRefPubMed Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.CrossRefPubMed
Metadata
Title
Mineral and bone disorders in kidney transplant recipients: reversible, irreversible, and de novo abnormalities
Authors
Takashi Hirukawa
Takatoshi Kakuta
Michio Nakamura
Masafumi Fukagawa
Publication date
01-08-2015
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 4/2015
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-015-1117-z

Other articles of this Issue 4/2015

Clinical and Experimental Nephrology 4/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.