Skip to main content
Top
Published in: Clinical and Experimental Nephrology 2/2015

01-04-2015 | Original Article

Aggravated renal tubular damage and interstitial fibrosis in mice lacking guanylyl cyclase-A (GC-A), a receptor for atrial and B-type natriuretic peptides

Authors: Fumiki Yoshihara, Takeshi Tokudome, Ichiro Kishimoto, Kentaro Otani, Atsunori Kuwabara, Takeshi Horio, Yuhei Kawano, Kenji Kangawa

Published in: Clinical and Experimental Nephrology | Issue 2/2015

Login to get access

Abstract

Background and aim

The infusion of chronic angiotensin II (Ang II) has been shown to promote renal interstitial fibrosis. To evaluate the pathophysiological significance of the natriuretic peptide-GC-A system, we infused Ang II (1.0 mg/kg/day) in GC-A-deficient mice (GC-A-KO).

Methods

We used 5 groups (Wild-Saline n = 12, Wild-Ang II n = 14, GC-A-KO-Saline n = 11, GC-A-KO-Ang II n = 13, and GC-A-KO-Ang II-Hydralazine n = 10). Saline or Ang II was infused subcutaneously using an osmotic minipump for 3 weeks. Hydralazine was administered orally (0.05 g/L in drinking water).

Results

Systolic blood pressure was significantly higher in the GC-A-KO-Saline group (130 ± 12 mmHg) than in the Wild-Saline group (105 ± 30 mmHg), and was similar to that in the Wild-Ang II (141 ± 17 mmHg) and GC-A-KO-Ang II-Hydralazine (140 ± 20 mmHg) groups. Systolic blood pressure was significantly higher in the GC-A-KO-Ang II group (159 ± 21 mmHg) than in the 4 other groups. Renal tubular atrophy and interstitial fibrosis were significantly more severe in the GC-A-KO-Ang II group (atrophy 13.4 %, fibrosis 12.0 %) than in the Wild-Saline (0, 2.0 %), Wild-Ang II (2.9, 4.4 %), and GC-A-KO-Saline (0, 2.6 %) groups. Hydralazine could not inhibit this aggravation (GC-A-KO-Ang II-Hydralazine 13.5, 11.3 %). The expression of monocyte chemotactic protein-1 in tubular cells, and F4/80 and alpha-smooth muscle actin in the interstitium was clearly detected in the Ang II-infused wild and GC-A-KO groups and was associated with renal tubular atrophy and interstitial fibrosis. The expression of E-cadherin in tubular cells was absent in the Ang II-infused wild and GC-A-KO groups and was associated with renal tubular atrophy.

Conclusions

The natriuretic peptide-GC-A system may play an inhibitory role in Ang II-induced renal tubular atrophy, interstitial fibrosis, and phenotypic transformation in renal tubular cells and fibroblasts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kasahara M, Mukoyama M, Sugawara A, et al. Ameliorated glomerular injury in mice overexpressing brain natriuretic peptide with renal ablation. J Am Soc Nephrol. 2000;11:1691–701.PubMed Kasahara M, Mukoyama M, Sugawara A, et al. Ameliorated glomerular injury in mice overexpressing brain natriuretic peptide with renal ablation. J Am Soc Nephrol. 2000;11:1691–701.PubMed
2.
go back to reference Suganami T, Mukoyama M, Sugawara A, et al. Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J Am Soc Nephrol. 2001;12:2652–63.PubMed Suganami T, Mukoyama M, Sugawara A, et al. Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J Am Soc Nephrol. 2001;12:2652–63.PubMed
3.
go back to reference Makino H, Mukoyama M, Mori K, et al. Transgenic overexpression of brain natriuretic peptide prevents the progression of diabetic nephropathy in mice. Diabetologia. 2006;49:2514–24.CrossRefPubMed Makino H, Mukoyama M, Mori K, et al. Transgenic overexpression of brain natriuretic peptide prevents the progression of diabetic nephropathy in mice. Diabetologia. 2006;49:2514–24.CrossRefPubMed
4.
5.
go back to reference Lopez MJ, Wong SK, Kishimoto I, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378:65–8.CrossRefPubMed Lopez MJ, Wong SK, Kishimoto I, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378:65–8.CrossRefPubMed
6.
go back to reference Sabrane K, Kruse MN, Fabritz L, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115:1666–74.CrossRefPubMedCentralPubMed Sabrane K, Kruse MN, Fabritz L, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115:1666–74.CrossRefPubMedCentralPubMed
7.
go back to reference Chen W, Gassner B, Börner S, et al. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res. 2012;93:141–51.CrossRefPubMedCentralPubMed Chen W, Gassner B, Börner S, et al. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res. 2012;93:141–51.CrossRefPubMedCentralPubMed
8.
go back to reference Ogawa Y, Mukoyama M, Yokoi H, et al. Natriuretic peptide receptor guanylyl cyclase-a protects podocytes from aldosterone-induced glomerular injury. J Am Soc Nephrol. 2012;23:1198–209.CrossRefPubMedCentralPubMed Ogawa Y, Mukoyama M, Yokoi H, et al. Natriuretic peptide receptor guanylyl cyclase-a protects podocytes from aldosterone-induced glomerular injury. J Am Soc Nephrol. 2012;23:1198–209.CrossRefPubMedCentralPubMed
9.
go back to reference Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.CrossRefPubMed Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.CrossRefPubMed
10.
go back to reference Faulkner JL, Szcykalski LM, Springer F, Barnes JL. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am J Pathol. 2005;167:1193–205.CrossRefPubMedCentralPubMed Faulkner JL, Szcykalski LM, Springer F, Barnes JL. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am J Pathol. 2005;167:1193–205.CrossRefPubMedCentralPubMed
11.
go back to reference Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39:838–43.CrossRefPubMed Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39:838–43.CrossRefPubMed
12.
go back to reference Johnson RJ, Alpers CE, Yoshimura A, et al. Renal injury from angiotensin II-mediated hypertension. Hypertension. 1992;19:464–74.CrossRefPubMed Johnson RJ, Alpers CE, Yoshimura A, et al. Renal injury from angiotensin II-mediated hypertension. Hypertension. 1992;19:464–74.CrossRefPubMed
13.
go back to reference Lombardi DM, Viswanathan M, Vio CP, Saavedra JM, Schwartz SM, Johnson RJ. Renal and vascular injury induced by exogenous angiotensin II is AT1 receptor-dependent. Nephron. 2001;87:66–74.CrossRefPubMed Lombardi DM, Viswanathan M, Vio CP, Saavedra JM, Schwartz SM, Johnson RJ. Renal and vascular injury induced by exogenous angiotensin II is AT1 receptor-dependent. Nephron. 2001;87:66–74.CrossRefPubMed
14.
go back to reference Kitayama H, Maeshima Y, Takazawa Y, et al. Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens. 2006;19:718–27.CrossRefPubMed Kitayama H, Maeshima Y, Takazawa Y, et al. Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens. 2006;19:718–27.CrossRefPubMed
15.
go back to reference Ozawa Y, Kobori H, Suzaki Y, Navar LG. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions. Am J Physiol Renal Physiol. 2007;292:F330–9.CrossRefPubMedCentralPubMed Ozawa Y, Kobori H, Suzaki Y, Navar LG. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions. Am J Physiol Renal Physiol. 2007;292:F330–9.CrossRefPubMedCentralPubMed
16.
go back to reference Giachelli CM, Pichler R, Lombardi D, et al. Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int. 1994;45:515–24.CrossRefPubMed Giachelli CM, Pichler R, Lombardi D, et al. Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int. 1994;45:515–24.CrossRefPubMed
17.
go back to reference Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 1995;20:1–17.CrossRef Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 1995;20:1–17.CrossRef
18.
go back to reference Desmoulière A, Darby IA, Gabbiani G. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest. 2003;83:1689–707.CrossRefPubMed Desmoulière A, Darby IA, Gabbiani G. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest. 2003;83:1689–707.CrossRefPubMed
19.
go back to reference Tokudome T, Horio T, Kishimoto I, et al. Calcineurin-nuclear factor of activated T cells pathway-dependent cardiac remodeling in mice deficient in guanylyl cyclase A, a receptor for atrial and brain natriuretic peptides. Circulation. 2005;111:3095–104.CrossRefPubMed Tokudome T, Horio T, Kishimoto I, et al. Calcineurin-nuclear factor of activated T cells pathway-dependent cardiac remodeling in mice deficient in guanylyl cyclase A, a receptor for atrial and brain natriuretic peptides. Circulation. 2005;111:3095–104.CrossRefPubMed
20.
go back to reference Quesada A, Vargas F, Montoro-Molina S, et al. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. PLoS ONE. 2012;7:e40402.CrossRefPubMedCentralPubMed Quesada A, Vargas F, Montoro-Molina S, et al. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. PLoS ONE. 2012;7:e40402.CrossRefPubMedCentralPubMed
21.
go back to reference Li P, Oparil S, Novak L, et al. ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol. 2007;102:390–8.CrossRefPubMed Li P, Oparil S, Novak L, et al. ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol. 2007;102:390–8.CrossRefPubMed
22.
go back to reference Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression–involvement of p38 MAPK and MKP-1. J Leukoc Biol. 2003;74:932–41.CrossRefPubMed Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression–involvement of p38 MAPK and MKP-1. J Leukoc Biol. 2003;74:932–41.CrossRefPubMed
23.
go back to reference Suzuki K, Han GD, Miyauchi N, et al. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am J Pathol. 2007;170:1841–53.CrossRefPubMedCentralPubMed Suzuki K, Han GD, Miyauchi N, et al. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am J Pathol. 2007;170:1841–53.CrossRefPubMedCentralPubMed
24.
go back to reference Baltatu O, Silva JA Jr, Ganten D, Bader M. The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension. 2000;35(part 2):409–12.CrossRefPubMed Baltatu O, Silva JA Jr, Ganten D, Bader M. The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension. 2000;35(part 2):409–12.CrossRefPubMed
25.
go back to reference Cargill RI, Coutie WJ, Lipworth BJ. The effects of angiotensin II on circulating levels of natriuretic peptides. Br J Clin Pharmacol. 1994;38:139–42.CrossRefPubMedCentralPubMed Cargill RI, Coutie WJ, Lipworth BJ. The effects of angiotensin II on circulating levels of natriuretic peptides. Br J Clin Pharmacol. 1994;38:139–42.CrossRefPubMedCentralPubMed
26.
go back to reference Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324:473–6.CrossRefPubMed Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324:473–6.CrossRefPubMed
27.
go back to reference Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17:2974–84.CrossRefPubMed Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17:2974–84.CrossRefPubMed
28.
go back to reference Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004;65:871–80.CrossRefPubMed Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004;65:871–80.CrossRefPubMed
29.
go back to reference Sun S, Ning X, Zhang Y, et al. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 2009;75:1278–87.CrossRefPubMed Sun S, Ning X, Zhang Y, et al. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 2009;75:1278–87.CrossRefPubMed
30.
go back to reference Long DA, Mu W, Price KL, et al. Vascular endothelial growth factor administration does not improve microvascular disease in the salt-dependent phase of post-angiotensin II hypertension. Am J Physiol Renal Physiol. 2006;291:F1248–54.CrossRefPubMed Long DA, Mu W, Price KL, et al. Vascular endothelial growth factor administration does not improve microvascular disease in the salt-dependent phase of post-angiotensin II hypertension. Am J Physiol Renal Physiol. 2006;291:F1248–54.CrossRefPubMed
31.
go back to reference Parekh N, Zou AP. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol. 1996;271:F653–8.PubMed Parekh N, Zou AP. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol. 1996;271:F653–8.PubMed
32.
go back to reference Zhu Q, Wang Z, Xia M, et al. Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats. Hypertension. 2011;58:657–64.CrossRefPubMedCentralPubMed Zhu Q, Wang Z, Xia M, et al. Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats. Hypertension. 2011;58:657–64.CrossRefPubMedCentralPubMed
33.
go back to reference Tokudome T, Kishimoto I, Yamahara K, et al. Impaired recovery of blood flow after hind-limb ischemia in mice lacking guanylyl cyclase-A, a receptor for atrial and brain natriuretic peptides. Arterioscler Thromb Vasc Biol. 2009;29:1516–21.CrossRefPubMed Tokudome T, Kishimoto I, Yamahara K, et al. Impaired recovery of blood flow after hind-limb ischemia in mice lacking guanylyl cyclase-A, a receptor for atrial and brain natriuretic peptides. Arterioscler Thromb Vasc Biol. 2009;29:1516–21.CrossRefPubMed
34.
go back to reference Sexton PM, Zhuo J, Mendelsohn FA. Localization and regulation of renal receptors for angiotensin II and atrial natriuretic peptide. Tohoku J Exp Med. 1992;166:41–56.CrossRefPubMed Sexton PM, Zhuo J, Mendelsohn FA. Localization and regulation of renal receptors for angiotensin II and atrial natriuretic peptide. Tohoku J Exp Med. 1992;166:41–56.CrossRefPubMed
35.
go back to reference Garg R, Pandey KN. Angiotensin II-mediated negative regulation of Npr1 promoter activity and gene transcription. Hypertension. 2003;41(part 2):730–6.CrossRefPubMed Garg R, Pandey KN. Angiotensin II-mediated negative regulation of Npr1 promoter activity and gene transcription. Hypertension. 2003;41(part 2):730–6.CrossRefPubMed
36.
go back to reference Arise KK, Pandey KN. Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C. Biochem Biophys Res Commun. 2006;349:131–5.CrossRefPubMed Arise KK, Pandey KN. Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C. Biochem Biophys Res Commun. 2006;349:131–5.CrossRefPubMed
37.
go back to reference Hu P, Wang J, Zhao XQ, Hu B, Lu L, Qin YH. Overexpressed C-type natriuretic peptide serves as an early compensatory response to counteract extracellular matrix remodeling in unilateral ureteral obstruction rats. Mol Biol Rep. 2013;40:1429–41.CrossRefPubMed Hu P, Wang J, Zhao XQ, Hu B, Lu L, Qin YH. Overexpressed C-type natriuretic peptide serves as an early compensatory response to counteract extracellular matrix remodeling in unilateral ureteral obstruction rats. Mol Biol Rep. 2013;40:1429–41.CrossRefPubMed
38.
go back to reference Segawa K, Minami K, Jimi N, Nakashima Y, Shigematsu A. C-type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:70–6.CrossRefPubMed Segawa K, Minami K, Jimi N, Nakashima Y, Shigematsu A. C-type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:70–6.CrossRefPubMed
39.
go back to reference Canaan-Kühl S, Ostendorf T, Zander K, Koch KM, Floege J. C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int. 1998;53:1143–51.CrossRefPubMed Canaan-Kühl S, Ostendorf T, Zander K, Koch KM, Floege J. C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int. 1998;53:1143–51.CrossRefPubMed
Metadata
Title
Aggravated renal tubular damage and interstitial fibrosis in mice lacking guanylyl cyclase-A (GC-A), a receptor for atrial and B-type natriuretic peptides
Authors
Fumiki Yoshihara
Takeshi Tokudome
Ichiro Kishimoto
Kentaro Otani
Atsunori Kuwabara
Takeshi Horio
Yuhei Kawano
Kenji Kangawa
Publication date
01-04-2015
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 2/2015
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-014-0982-1

Other articles of this Issue 2/2015

Clinical and Experimental Nephrology 2/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.