Skip to main content
Top
Published in: Clinical and Experimental Nephrology 2/2014

01-04-2014 | Review Article

Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease

Author: Kerry-Anne Rye

Published in: Clinical and Experimental Nephrology | Issue 2/2014

Login to get access

Abstract

High-density lipoproteins (HDL) originate as discoidal particles that are rapidly converted by lecithin:cholesterol acyltransferase (LCAT) into the spherical particles that predominate in normal human plasma. Spherical HDL consist of multiple populations of particles that vary widely in size, composition and function. Human population studies have established that high plasma HDL cholesterol levels are associated with a reduced incidence of cardiovascular disease. The mechanistic basis of this relationship is not well understood, but most likely involves a number of the cardioprotective functions of HDL. These include the ability of apolipoprotein (apo) A-I, the main apolipoprotein constituent of HDL, to remove cholesterol from macrophages in the artery wall. HDL also have antioxidant and anti-inflammatory properties that are potentially cardioprotective. Evidence that some of these beneficial properties are compromised in people with diabetes and renal disease is emerging. Persistently elevated plasma glucose levels in people with diabetes and poor glycemic control can lead to irreversible, non-enzymatic glycation of plasma proteins, including apoA-I. Non-enzymatically glycated proteins are also prevalent in people with diabetes and end-stage renal disease who are at high cardiovascular risk. Evidence that non-enzymatically glycated apoA-I inhibits the LCAT reaction and impairs some of the cardioprotective properties of HDL is also emerging. This review is concerned with how non-enzymatic glycation of apoA-I affects the ability of LCAT to convert discoidal HDL into spherical HDL, how it affects cholesterol efflux from macrophages and how it affects the anti-inflammatory and antioxidant properties of HDL.
Literature
1.
go back to reference Hamilton RL, Williams MC, Fielding CJ, Havel RJ. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest. 1976;58(3):667–80.PubMedCentralPubMedCrossRef Hamilton RL, Williams MC, Fielding CJ, Havel RJ. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest. 1976;58(3):667–80.PubMedCentralPubMedCrossRef
2.
go back to reference Hara H, Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991;266(5):3080–6.PubMed Hara H, Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991;266(5):3080–6.PubMed
3.
go back to reference Forte T, Norum KR, Glomset JA, Nichols AV. Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: structure of low and high density lipoproteins as revealed by electron microscopy. J Clin Invest. 1971;50(5):1141–8.PubMedCentralPubMedCrossRef Forte T, Norum KR, Glomset JA, Nichols AV. Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: structure of low and high density lipoproteins as revealed by electron microscopy. J Clin Invest. 1971;50(5):1141–8.PubMedCentralPubMedCrossRef
4.
go back to reference Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.PubMedCrossRef Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.PubMedCrossRef
5.
go back to reference Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.PubMedCentralPubMedCrossRef Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.PubMedCentralPubMedCrossRef
6.
go back to reference Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–94.PubMedCrossRef Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–94.PubMedCrossRef
7.
go back to reference Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998;273(11):6088–95.PubMedCrossRef Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998;273(11):6088–95.PubMedCrossRef
8.
go back to reference Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, et al. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol. 2009;29(12):2169–75.PubMedCrossRef Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, et al. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol. 2009;29(12):2169–75.PubMedCrossRef
9.
go back to reference Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006;98(11):1352–64.PubMedCrossRef Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006;98(11):1352–64.PubMedCrossRef
10.
go back to reference Curtiss LK, Witztum JL. Plasma apolipoproteins AI, AII, B, CI, and E are glycosylated in hyperglycemic diabetic subjects. Diabetes. 1985;34(5):452–61.PubMedCrossRef Curtiss LK, Witztum JL. Plasma apolipoproteins AI, AII, B, CI, and E are glycosylated in hyperglycemic diabetic subjects. Diabetes. 1985;34(5):452–61.PubMedCrossRef
11.
go back to reference Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, Yan L, et al. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766–72.PubMedCentralPubMedCrossRef Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, Yan L, et al. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766–72.PubMedCentralPubMedCrossRef
12.
go back to reference Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.PubMedCentralPubMedCrossRef Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.PubMedCentralPubMedCrossRef
13.
go back to reference Brown BE, Nobécourt E, Zeng J, Jenkins AJ, Rye KA, Davies MJ. Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS One. 2013;8(5):e65430.PubMedCentralPubMedCrossRef Brown BE, Nobécourt E, Zeng J, Jenkins AJ, Rye KA, Davies MJ. Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS One. 2013;8(5):e65430.PubMedCentralPubMedCrossRef
14.
go back to reference Passarelli M, Shimabukuro AF, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJ, et al. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta. 2000;301(1–2):119–34.PubMedCrossRef Passarelli M, Shimabukuro AF, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJ, et al. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta. 2000;301(1–2):119–34.PubMedCrossRef
15.
go back to reference Passarelli M, Tang C, McDonald TO, O’Brien KD, Gerrity RG, Heinecke JW, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005;54(7):2198–205.PubMedCrossRef Passarelli M, Tang C, McDonald TO, O’Brien KD, Gerrity RG, Heinecke JW, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005;54(7):2198–205.PubMedCrossRef
16.
go back to reference Nobécourt E, Davies MJ, Brown BE, Curtiss LK, Bonnet DJ, Charlton F, et al. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia. 2007;50(3):643–53.PubMedCrossRef Nobécourt E, Davies MJ, Brown BE, Curtiss LK, Bonnet DJ, Charlton F, et al. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia. 2007;50(3):643–53.PubMedCrossRef
17.
go back to reference Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J, et al. Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. J Clin Invest. 1994;93(1):321–30.PubMedCentralPubMedCrossRef Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J, et al. Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. J Clin Invest. 1994;93(1):321–30.PubMedCentralPubMedCrossRef
18.
go back to reference Passarelli M, Catanozi S, Nakandakare ER, Rocha JC, Morton RE, Shimabukuro AF, et al. Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins. Diabetologia. 1997;40(9):1085–93.PubMedCrossRef Passarelli M, Catanozi S, Nakandakare ER, Rocha JC, Morton RE, Shimabukuro AF, et al. Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins. Diabetologia. 1997;40(9):1085–93.PubMedCrossRef
19.
go back to reference Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye KA, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. 2005;111(12):1543–50.PubMedCrossRef Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye KA, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. 2005;111(12):1543–50.PubMedCrossRef
20.
go back to reference Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, et al. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25(11):2416–21.PubMedCrossRef Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, et al. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25(11):2416–21.PubMedCrossRef
21.
go back to reference McGrath KC, Li XH, Puranik R, Liong EC, Tan JT, Dy VM, et al. Role of 3beta-hydroxysteroid-delta 24 reductase in mediating anti-inflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82.PubMedCrossRef McGrath KC, Li XH, Puranik R, Liong EC, Tan JT, Dy VM, et al. Role of 3beta-hydroxysteroid-delta 24 reductase in mediating anti-inflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82.PubMedCrossRef
22.
go back to reference Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3beta-hydroxysteroid-delta24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013;112(2):278–88. Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3beta-hydroxysteroid-delta24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013;112(2):278–88.
23.
go back to reference Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.PubMedCrossRef Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.PubMedCrossRef
24.
go back to reference Tabet F, Lambert G, Cuesta Torres LF, Hou L, Sotirchos I, Touyz RM, et al. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1192–200.PubMedCrossRef Tabet F, Lambert G, Cuesta Torres LF, Hou L, Sotirchos I, Touyz RM, et al. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1192–200.PubMedCrossRef
25.
go back to reference Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–54.PubMedCrossRef Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–54.PubMedCrossRef
26.
go back to reference Robbesyn F, Garcia V, Auge N, Vieira O, Frisach MF, Salvayre R, et al. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-κB activation in smooth muscle cells. Faseb J. 2003;17(6):743–5.PubMed Robbesyn F, Garcia V, Auge N, Vieira O, Frisach MF, Salvayre R, et al. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-κB activation in smooth muscle cells. Faseb J. 2003;17(6):743–5.PubMed
Metadata
Title
Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease
Author
Kerry-Anne Rye
Publication date
01-04-2014
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 2/2014
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-013-0865-x

Other articles of this Issue 2/2014

Clinical and Experimental Nephrology 2/2014 Go to the issue