Skip to main content
Top
Published in: Clinical and Experimental Nephrology 1/2012

01-02-2012 | Review article

Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies

Authors: Naohiko Anzai, Promsuk Jutabha, Sirirat Amonpatumrat-Takahashi, Hiroyuki Sakurai

Published in: Clinical and Experimental Nephrology | Issue 1/2012

Login to get access

Abstract

Humans have higher serum uric acid levels than other mammalian species owing to the genetic silencing of the hepatic enzyme uricase that metabolizes uric acid into allantoin. Urate (the ionized form of uric acid) is generated from purine metabolism and it may provide antioxidant defense in the human body. Despite its potential advantage, sustained hyperuricemia has pathogenetic causes in gout and renal diseases, and putative roles in hypertension and cardiovascular diseases. Since the kidney plays a dominant role in maintaining plasma urate levels through the excretion process, it is important to understand the molecular mechanism of renal urate handling. Although the molecular identification of a kidney-specific urate/anion exchanger URAT1 in 2002 paved the way for successive identification of several urate transport-related proteins, the entire picture of effective renal urate handling in humans has not yet been clarified. Recently, several genome-wide association studies identified a substantial association between uric acid concentration and single nucleotide polymorphisms in at least ten genetic loci including eight transporter-coding genes. In 2008, we functionally characterized the facilitatory glucose transporter family member SLC2A9 (GLUT9), one of the candidate genes for urate handling, as a voltage-driven urate transporter URATv1 at the basolateral side of renal proximal tubules that comprises the main route of the urate reabsorption pathway, in tandem with URAT1 at the apical side. In this review, recent findings concerning these candidate molecules are presented.
Literature
1.
go back to reference Sica DA, Schoolwerth AC. Renal handling of organic anions and cations: excretion of uric acid. In: Brenner BM, editor. The Kidney. 6th ed. Philadelphia: WB Saunders; 2000. p. 680–700. Sica DA, Schoolwerth AC. Renal handling of organic anions and cations: excretion of uric acid. In: Brenner BM, editor. The Kidney. 6th ed. Philadelphia: WB Saunders; 2000. p. 680–700.
2.
go back to reference Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19:151–7.PubMedCrossRef Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19:151–7.PubMedCrossRef
3.
go back to reference Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.PubMed Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.PubMed
4.
go back to reference Anzai N, Kanai Y, Endou H. Organic anion transporter family: current knowledge. J Pharmacol Sci. 2006;100:411–26.PubMedCrossRef Anzai N, Kanai Y, Endou H. Organic anion transporter family: current knowledge. J Pharmacol Sci. 2006;100:411–26.PubMedCrossRef
5.
go back to reference Jutabha P, Kanai Y, Hosoyamada H, Chairoungdua A, Kim DK, Iribe Y, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278:27930–8.PubMedCrossRef Jutabha P, Kanai Y, Hosoyamada H, Chairoungdua A, Kim DK, Iribe Y, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278:27930–8.PubMedCrossRef
6.
go back to reference van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005;288:F327–33.PubMedCrossRef van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005;288:F327–33.PubMedCrossRef
7.
go back to reference Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J Biol Chem. 2004;279:44522–32.PubMedCrossRef Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J Biol Chem. 2004;279:44522–32.PubMedCrossRef
8.
go back to reference Gopal E, Umapathy NS, Martin PM, Ananth S, Gnana-Prakasam JP, Becker H, et al. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim Biophys Acta. 2007;1768:2690–7.PubMedCrossRef Gopal E, Umapathy NS, Martin PM, Ananth S, Gnana-Prakasam JP, Becker H, et al. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim Biophys Acta. 2007;1768:2690–7.PubMedCrossRef
9.
go back to reference Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008;283:16332–41.PubMedCrossRef Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008;283:16332–41.PubMedCrossRef
10.
go back to reference Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.PubMedCrossRef Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.PubMedCrossRef
11.
go back to reference Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283:26834–8.PubMedCrossRef Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283:26834–8.PubMedCrossRef
12.
go back to reference Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197.PubMedCrossRef Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197.PubMedCrossRef
13.
go back to reference Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA. 2009;106:10338–42.PubMedCrossRef Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA. 2009;106:10338–42.PubMedCrossRef
14.
go back to reference Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004;279:45942–50.PubMedCrossRef Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004;279:45942–50.PubMedCrossRef
15.
go back to reference McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.PubMedCrossRef McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.PubMedCrossRef
16.
go back to reference Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3:e194.PubMedCrossRef Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3:e194.PubMedCrossRef
17.
go back to reference Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–49.PubMedCrossRef Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–49.PubMedCrossRef
18.
go back to reference Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.PubMedCrossRef Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.PubMedCrossRef
19.
go back to reference Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, Baessler A, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PLoS One. 2008;3:e1948.PubMedCrossRef Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, Baessler A, et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PLoS One. 2008;3:e1948.PubMedCrossRef
20.
go back to reference Brandstätter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31:1662–7.PubMedCrossRef Brandstätter A, Kiechl S, Kollerits B, Hunt SC, Heid IM, Coassin S, et al. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31:1662–7.PubMedCrossRef
21.
go back to reference Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.PubMedCrossRef Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.PubMedCrossRef
22.
go back to reference Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. Plos Genet. 2009;5:1–10.CrossRef Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. Plos Genet. 2009;5:1–10.CrossRef
23.
go back to reference Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori, Pacific Island, and Caucasian case-control sample sets. Arthritis Rheum. 2009;60:3485–92.PubMedCrossRef Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, et al. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori, Pacific Island, and Caucasian case-control sample sets. Arthritis Rheum. 2009;60:3485–92.PubMedCrossRef
24.
go back to reference Tu HP, Chen CJ, Tovosia S, Ko AM, Lee CH, Ou TT, et al. Associations of a nonsynonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese and Solomon Islanders. Ann Rheum Dis. 2010;69:887–90.PubMedCrossRef Tu HP, Chen CJ, Tovosia S, Ko AM, Lee CH, Ou TT, et al. Associations of a nonsynonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese and Solomon Islanders. Ann Rheum Dis. 2010;69:887–90.PubMedCrossRef
25.
go back to reference Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology (Bethesda). 2005;20:125–33.CrossRef Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology (Bethesda). 2005;20:125–33.CrossRef
26.
go back to reference Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9:195–205.PubMedCrossRef Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9:195–205.PubMedCrossRef
27.
go back to reference Anzai N, Enomoto A, Endou H. Renal urate handling: clinical relevance of recent advances. Curr Rheumatol Rep. 2005;7:227–34.PubMedCrossRef Anzai N, Enomoto A, Endou H. Renal urate handling: clinical relevance of recent advances. Curr Rheumatol Rep. 2005;7:227–34.PubMedCrossRef
28.
go back to reference Mount DB, Kwon CY, Zandi-Nejad K. Renal urate transport. Rheum Dis Clin North Am. 2006;32:313–31.PubMedCrossRef Mount DB, Kwon CY, Zandi-Nejad K. Renal urate transport. Rheum Dis Clin North Am. 2006;32:313–31.PubMedCrossRef
29.
go back to reference Taniguchi A, Kamatani N. Control of renal uric acid excretion and gout. Curr Opin Rheumatol. 2008;20:192–7.PubMedCrossRef Taniguchi A, Kamatani N. Control of renal uric acid excretion and gout. Curr Opin Rheumatol. 2008;20:192–7.PubMedCrossRef
30.
go back to reference Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004;279:16229–36.PubMedCrossRef Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004;279:16229–36.PubMedCrossRef
31.
go back to reference Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94:297–304.PubMedCrossRef Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94:297–304.PubMedCrossRef
32.
go back to reference Anzai N, Jutabha P, Kimura T, Fukutomi T. Urate transport: relationship with serum urate disorder. Curr Rheumatol Rev. 2011;7:123–31.CrossRef Anzai N, Jutabha P, Kimura T, Fukutomi T. Urate transport: relationship with serum urate disorder. Curr Rheumatol Rev. 2011;7:123–31.CrossRef
33.
go back to reference Bibert S, Hess SK, Firsov D, Thorens B, Geering K, Horisberger JD, et al. Mouse GLUT9: evidences for a urate uniporter. Am J Physiol Renal Physiol. 2009;297:F612–9.PubMedCrossRef Bibert S, Hess SK, Firsov D, Thorens B, Geering K, Horisberger JD, et al. Mouse GLUT9: evidences for a urate uniporter. Am J Physiol Renal Physiol. 2009;297:F612–9.PubMedCrossRef
34.
go back to reference Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21:64–72.PubMedCrossRef Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21:64–72.PubMedCrossRef
35.
go back to reference Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA. 2009;106:15501–6.PubMedCrossRef Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA. 2009;106:15501–6.PubMedCrossRef
36.
go back to reference Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006;46:381–410.PubMedCrossRef Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006;46:381–410.PubMedCrossRef
37.
go back to reference Ishikawa T, Nakagawa H. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. J Exp Ther Oncol. 2009;8:5–24.PubMed Ishikawa T, Nakagawa H. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. J Exp Ther Oncol. 2009;8:5–24.PubMed
38.
go back to reference Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73:220–5.PubMedCrossRef Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73:220–5.PubMedCrossRef
39.
go back to reference Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22:7340–58.PubMedCrossRef Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22:7340–58.PubMedCrossRef
40.
go back to reference Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. 2004;447:629–35.PubMedCrossRef Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. 2004;447:629–35.PubMedCrossRef
41.
go back to reference Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, et al. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun. 2000;270:254–9.PubMedCrossRef Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, et al. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun. 2000;270:254–9.PubMedCrossRef
42.
go back to reference Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 (NPT1) sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;69:932–3.PubMedCrossRef Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, et al. Sodium-dependent phosphate cotransporter type 1 (NPT1) sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010;69:932–3.PubMedCrossRef
43.
go back to reference Melis D, Havelaar AC, Verbeek E, Smit GP, Benedetti A, Mancini GM, et al. NPT4, a new microsomal phosphate transporter: mutation analysis in glycogen storage disease type Ic. J Inherit Metab Dis. 2004;27:725–33.PubMedCrossRef Melis D, Havelaar AC, Verbeek E, Smit GP, Benedetti A, Mancini GM, et al. NPT4, a new microsomal phosphate transporter: mutation analysis in glycogen storage disease type Ic. J Inherit Metab Dis. 2004;27:725–33.PubMedCrossRef
44.
go back to reference Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010;285:35123–32.PubMedCrossRef Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010;285:35123–32.PubMedCrossRef
45.
go back to reference Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter. J Hum Genet. 1999;44:190–2.PubMedCrossRef Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter. J Hum Genet. 1999;44:190–2.PubMedCrossRef
46.
go back to reference Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447:619–28.PubMedCrossRef Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447:619–28.PubMedCrossRef
47.
go back to reference van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19:387–95.PubMedCrossRef van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19:387–95.PubMedCrossRef
48.
go back to reference Kocher O, Comella N, Tognazzi K, Brown LF. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Invest. 1998;78:117–25.PubMed Kocher O, Comella N, Tognazzi K, Brown LF. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Invest. 1998;78:117–25.PubMed
49.
go back to reference Lamprecht G, Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol. 2006;291:G766–77.PubMedCrossRef Lamprecht G, Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol. 2006;291:G766–77.PubMedCrossRef
50.
go back to reference Miyazaki H, Anzai N, Ekaratanawong S, Sakata T, Shin HJ, Jutabha P, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol. 2005;16:3498–506.PubMedCrossRef Miyazaki H, Anzai N, Ekaratanawong S, Sakata T, Shin HJ, Jutabha P, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol. 2005;16:3498–506.PubMedCrossRef
51.
go back to reference Noshiro R, Anzai N, Sakata T, Miyazaki H, Terada T, Shin HJ, et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney Int. 2006;70:275–82.PubMedCrossRef Noshiro R, Anzai N, Sakata T, Miyazaki H, Terada T, Shin HJ, et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney Int. 2006;70:275–82.PubMedCrossRef
52.
go back to reference Jutabha P, Anzai N, Endou H, Kanai Y. Interaction of the multivalent PDZ domain protein PDZK1 with type I sodium-phosphate cotransporter (NPT1). J Am Soc Nephrol. 2005;16:350A. Jutabha P, Anzai N, Endou H, Kanai Y. Interaction of the multivalent PDZ domain protein PDZK1 with type I sodium-phosphate cotransporter (NPT1). J Am Soc Nephrol. 2005;16:350A.
53.
go back to reference Fukutomi T, Anzai N, Jutabha P, Kanai Y, Sakurai H. Interaction of the multivalent PDZ proteins with sodium-phosphate transporter 4 (NPT4). J Pharmacol Sci. 2011;115:68P. Fukutomi T, Anzai N, Jutabha P, Kanai Y, Sakurai H. Interaction of the multivalent PDZ proteins with sodium-phosphate transporter 4 (NPT4). J Pharmacol Sci. 2011;115:68P.
54.
go back to reference Thomson RB, Wang T, Thomson BR, Tarrats L, Girardi A, Mentone S, et al. Role of PDZK1 in membrane expression of renal brush border ion exchangers. Proc Natl Acad Sci USA. 2005;102:13331–6.PubMedCrossRef Thomson RB, Wang T, Thomson BR, Tarrats L, Girardi A, Mentone S, et al. Role of PDZK1 in membrane expression of renal brush border ion exchangers. Proc Natl Acad Sci USA. 2005;102:13331–6.PubMedCrossRef
55.
go back to reference Anzai N, Endou H. Drug discovery for hyperuricemia. Expert Opin Drug Discov. 2007;2:1251–61.CrossRef Anzai N, Endou H. Drug discovery for hyperuricemia. Expert Opin Drug Discov. 2007;2:1251–61.CrossRef
56.
go back to reference Srivastava S, Anzai N, Miyauchi S, Miura D, Fukutomi T, et al. Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate cotransporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12) by yeast two-hybrid assay. J Pharmacol Sci. 2009;109:68. Srivastava S, Anzai N, Miyauchi S, Miura D, Fukutomi T, et al. Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate cotransporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12) by yeast two-hybrid assay. J Pharmacol Sci. 2009;109:68.
57.
go back to reference Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34:78–84.PubMedCrossRef Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34:78–84.PubMedCrossRef
58.
go back to reference Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002;40:355–60.PubMedCrossRef Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002;40:355–60.PubMedCrossRef
59.
go back to reference Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA. 1994;91:742–6.PubMedCrossRef Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA. 1994;91:742–6.PubMedCrossRef
Metadata
Title
Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies
Authors
Naohiko Anzai
Promsuk Jutabha
Sirirat Amonpatumrat-Takahashi
Hiroyuki Sakurai
Publication date
01-02-2012
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 1/2012
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-011-0532-z

Other articles of this Issue 1/2012

Clinical and Experimental Nephrology 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.