Skip to main content
Top
Published in: Clinical and Experimental Nephrology 1/2011

01-02-2011 | Original Article

CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats

Authors: Kenro Miyasato, Yoshitsugu Takabatake, Junya Kaimori, Tomonori Kimura, Harumi Kitamura, Hiroshi Kawachi, Xiao-Kang Li, Thomas Hünig, Shiro Takahara, Hiromi Rakugi, Yoshitaka Isaka

Published in: Clinical and Experimental Nephrology | Issue 1/2011

Login to get access

Abstract

Background

Naturally occurring regulatory T cells (Treg) are essential for the prevention of autoimmunity and overshooting immune responses to pathogens; however, the involvement of Treg in mesangioproliferative glomerulonephritis, a major cause of chronic kidney disease, remains unclear. Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of Treg in rats.

Method

To confirm our hypothesis that CD28SA reduces the severity of experimental glomerulonephritis, anti-Thy1 nephritis model rats were treated with CD28SA or saline.

Results

CD28SA significantly suppressed the increase in proteinuria and serum creatinine levels. CD28SA-treated nephritic rats exhibited an increase in the infiltration of Treg in the glomeruli accompanied by infiltration of CD163-positive macrophages (“alternatively activated” macrophages). In addition, CD28SA significantly induced interleukin-10 mRNA expression in glomeruli, thereby ameliorating mesangial cell proliferation and extracellular matrix expansion.

Conclusion

We established a new therapeutic approach to suppressing progressive glomerulonephritis. The therapeutic value of this approach warrants further attention and preclinical studies.
Literature
1.
go back to reference Alpers CE, Hudkins KL, Gown AM, Johnson RJ. Enhanced expression of “muscle-specific” actin in glomerulonephritis. Kidney Int. 1992;41:1134–42.CrossRefPubMed Alpers CE, Hudkins KL, Gown AM, Johnson RJ. Enhanced expression of “muscle-specific” actin in glomerulonephritis. Kidney Int. 1992;41:1134–42.CrossRefPubMed
2.
go back to reference Striker LJ, Peten EP, Elliot SJ, Doi T, Striker GE. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest. 1991;64:446–56.PubMed Striker LJ, Peten EP, Elliot SJ, Doi T, Striker GE. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest. 1991;64:446–56.PubMed
3.
go back to reference Mukai K, Shibata T, Kato K, Sugisaki T. Adjuvant-induced macrophage-dominant nephrotoxic serum nephritis in rats. Clin Exp Nephrol. 2005;9:15–23.CrossRefPubMed Mukai K, Shibata T, Kato K, Sugisaki T. Adjuvant-induced macrophage-dominant nephrotoxic serum nephritis in rats. Clin Exp Nephrol. 2005;9:15–23.CrossRefPubMed
4.
go back to reference Huang XR, Tipping PG, Shuo L, Holdsworth SR. Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int. 1997;51:94–103.CrossRefPubMed Huang XR, Tipping PG, Shuo L, Holdsworth SR. Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int. 1997;51:94–103.CrossRefPubMed
5.
go back to reference El-Shemi AG, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Qu Z, et al. Suppression of experimental crescentic glomerulonephritis by interleukin-10 gene transfer. Kidney Int. 2004;65:1280–9.CrossRefPubMed El-Shemi AG, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Qu Z, et al. Suppression of experimental crescentic glomerulonephritis by interleukin-10 gene transfer. Kidney Int. 2004;65:1280–9.CrossRefPubMed
6.
go back to reference Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 2005;6:345–52.CrossRef Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 2005;6:345–52.CrossRef
7.
go back to reference Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed
8.
go back to reference Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202:445–55.CrossRefPubMed Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202:445–55.CrossRefPubMed
9.
go back to reference Luhder F, Huang Y, Dennehy KM, Guntermann C, Muller I, Winkler E, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003;197:955–66.CrossRefPubMed Luhder F, Huang Y, Dennehy KM, Guntermann C, Muller I, Winkler E, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med. 2003;197:955–66.CrossRefPubMed
10.
go back to reference Tacke M, Clark GJ, Dallman MJ, Hunig T. Cellular distribution and costimulatory function of rat CD28. Regulated expression during thymocyte maturation and induction of cyclosporin A sensitivity of costimulated T cell responses by phorbol ester. J Immunol. 1995;154:5121–7.PubMed Tacke M, Clark GJ, Dallman MJ, Hunig T. Cellular distribution and costimulatory function of rat CD28. Regulated expression during thymocyte maturation and induction of cyclosporin A sensitivity of costimulated T cell responses by phorbol ester. J Immunol. 1995;154:5121–7.PubMed
11.
go back to reference Lin CH, Hunig T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003;33:626–38.CrossRefPubMed Lin CH, Hunig T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2003;33:626–38.CrossRefPubMed
12.
go back to reference Kawachi H, Orikasa M, Matsui K, Iwanaga T, Toyabe S, Oite T, et al. Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol. 1992;88:399–404.CrossRefPubMed Kawachi H, Orikasa M, Matsui K, Iwanaga T, Toyabe S, Oite T, et al. Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol. 1992;88:399–404.CrossRefPubMed
13.
go back to reference Yamamoto T, Wilson CB. Complement dependence of antibody-induced mesangial cell injury in the rat. J Immunol. 1987;138:3758–65.PubMed Yamamoto T, Wilson CB. Complement dependence of antibody-induced mesangial cell injury in the rat. J Immunol. 1987;138:3758–65.PubMed
14.
go back to reference Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther. 2005;12:965–73.CrossRefPubMed Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther. 2005;12:965–73.CrossRefPubMed
15.
go back to reference Azuma H, Isaka Y, Li X, Hunig T, Sakamoto T, Nohmi H, et al. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts. Am J Transplant. 2008;8:2004–14.CrossRefPubMed Azuma H, Isaka Y, Li X, Hunig T, Sakamoto T, Nohmi H, et al. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts. Am J Transplant. 2008;8:2004–14.CrossRefPubMed
16.
go back to reference Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.CrossRefPubMed Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.CrossRefPubMed
18.
go back to reference Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.CrossRefPubMed
19.
go back to reference Mahajan D, Wang Y, Qin X, Zheng G, Wang YM, Alexander SI, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol. 2006;17:2731–41.CrossRefPubMed Mahajan D, Wang Y, Qin X, Zheng G, Wang YM, Alexander SI, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol. 2006;17:2731–41.CrossRefPubMed
20.
go back to reference Wang YM, Zhang GY, Wang Y, Hu M, Wu H, Watson D, et al. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J Am Soc Nephrol. 2006;17:697–706.CrossRefPubMed Wang YM, Zhang GY, Wang Y, Hu M, Wu H, Watson D, et al. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J Am Soc Nephrol. 2006;17:697–706.CrossRefPubMed
21.
go back to reference Wolf D, Hochegger K, Wolf AM, Rumpold HF, Gastl G, Tilg H, et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol. 2005;16:1360–70.CrossRefPubMed Wolf D, Hochegger K, Wolf AM, Rumpold HF, Gastl G, Tilg H, et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol. 2005;16:1360–70.CrossRefPubMed
22.
go back to reference Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–51.CrossRefPubMed Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–51.CrossRefPubMed
23.
go back to reference Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMed Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMed
24.
go back to reference Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.CrossRefPubMed Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.CrossRefPubMed
25.
go back to reference Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.CrossRefPubMed Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.CrossRefPubMed
Metadata
Title
CD28 superagonist-induced regulatory T cell expansion ameliorates mesangioproliferative glomerulonephritis in rats
Authors
Kenro Miyasato
Yoshitsugu Takabatake
Junya Kaimori
Tomonori Kimura
Harumi Kitamura
Hiroshi Kawachi
Xiao-Kang Li
Thomas Hünig
Shiro Takahara
Hiromi Rakugi
Yoshitaka Isaka
Publication date
01-02-2011
Publisher
Springer Japan
Published in
Clinical and Experimental Nephrology / Issue 1/2011
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-010-0370-4

Other articles of this Issue 1/2011

Clinical and Experimental Nephrology 1/2011 Go to the issue