Skip to main content
Top
Published in: Journal of Infection and Chemotherapy 6/2012

01-12-2012 | Review Article

Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer

Authors: Toshiyuki Sasagawa, Hiroaki Takagi, Satoru Makinoda

Published in: Journal of Infection and Chemotherapy | Issue 6/2012

Login to get access

Abstract

Human papillomavirus (HPV) is the most important etiological factor for cervical cancer. A recent study demonstrated that more than 20 HPV types were thought to be oncogenic for uterine cervical cancer. Notably, more than one-half of women show cervical HPV infections soon after their sexual debut, and about 90 % of such infections are cleared within 3 years. Immunity against HPV might be important for elimination of the virus. The innate immune responses involving macrophages, natural killer cells, and natural killer T cells may play a role in the first line of defense against HPV infection. In the second line of defense, adaptive immunity via cytotoxic T lymphocytes (CTLs) targeting HPV16 E2 and E6 proteins appears to eliminate cells infected with HPV16. However, HPV can evade host immune responses. First, HPV does not kill host cells during viral replication and therefore neither presents viral antigen nor induces inflammation. HPV16 E6 and E7 proteins downregulate the expression of type-1 interferons (IFNs) in host cells. The lack of co-stimulatory signals by inflammatory cytokines including IFNs during antigen recognition may induce immune tolerance rather than the appropriate responses. Moreover, HPV16 E5 protein downregulates the expression of HLA-class 1, and it facilitates evasion of CTL attack. These mechanisms of immune evasion may eventually support the establishment of persistent HPV infection, leading to the induction of cervical cancer. Considering such immunological events, prophylactic HPV16 and 18 vaccine appears to be the best way to prevent cervical cancer in women who are immunized in adolescence.
Literature
1.
go back to reference zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.PubMedCrossRef zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.PubMedCrossRef
2.
go back to reference Shigehara K, Sasagawa T, Kawaguchi S, Nakashima T, Shimamura M, Maeda Y, et al. Etiologic role of human papillomavirus infection in bladder carcinoma. Cancer. 2011;117:2067–76.PubMedCrossRef Shigehara K, Sasagawa T, Kawaguchi S, Nakashima T, Shimamura M, Maeda Y, et al. Etiologic role of human papillomavirus infection in bladder carcinoma. Cancer. 2011;117:2067–76.PubMedCrossRef
3.
go back to reference Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401:70–9.PubMedCrossRef Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401:70–9.PubMedCrossRef
4.
go back to reference Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJ, Meijer CJ. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMedCrossRef Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJ, Meijer CJ. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMedCrossRef
5.
go back to reference de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.PubMedCrossRef de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.PubMedCrossRef
6.
go back to reference Matsukura T, Sugase M. Human papillomavirus genomes in squamous cell carcinomas of the uterine cervix. Virology. 2004;324:439–49.PubMedCrossRef Matsukura T, Sugase M. Human papillomavirus genomes in squamous cell carcinomas of the uterine cervix. Virology. 2004;324:439–49.PubMedCrossRef
7.
go back to reference Sasagawa T, Basha W, Yamazaki H, Inoue M. High-risk and multiple human papillomavirus infections associated with cervical abnormalities in Japanese women. Cancer Epidemiol Biomarkers Prev. 2001;10:45–52.PubMed Sasagawa T, Basha W, Yamazaki H, Inoue M. High-risk and multiple human papillomavirus infections associated with cervical abnormalities in Japanese women. Cancer Epidemiol Biomarkers Prev. 2001;10:45–52.PubMed
8.
go back to reference Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110:525–41.CrossRef Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110:525–41.CrossRef
9.
go back to reference Moscicki AB. Impact of HPV infection in adolescent populations. J Adolesc Health. 2005;37:S3–9 (review). Moscicki AB. Impact of HPV infection in adolescent populations. J Adolesc Health. 2005;37:S3–9 (review).
10.
go back to reference Gadducci A, Barsotti C, Cosio S, Domenici L, Riccardo Genazzani A. Smoking habit, immune suppression, oral contraceptive use, and hormone replacement therapy use and cervical carcinogenesis: a review of the literature. Gynecol Endocrinol. 2011;27:597–604.PubMedCrossRef Gadducci A, Barsotti C, Cosio S, Domenici L, Riccardo Genazzani A. Smoking habit, immune suppression, oral contraceptive use, and hormone replacement therapy use and cervical carcinogenesis: a review of the literature. Gynecol Endocrinol. 2011;27:597–604.PubMedCrossRef
11.
go back to reference Stanley MA. Immune responses to human papilloma viruses. Indian J Med Res. 2009;130:266–76.PubMed Stanley MA. Immune responses to human papilloma viruses. Indian J Med Res. 2009;130:266–76.PubMed
12.
go back to reference Palefsky J. Human papillomavirus-associated malignancies in HIV-positive men and women. Curr Opin Oncol. 1995;7:437–41.PubMedCrossRef Palefsky J. Human papillomavirus-associated malignancies in HIV-positive men and women. Curr Opin Oncol. 1995;7:437–41.PubMedCrossRef
13.
go back to reference de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002;62:472–509.PubMed de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002;62:472–509.PubMed
14.
go back to reference Welters MJ, de Jong A, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 2003;63:636–41.PubMed Welters MJ, de Jong A, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 2003;63:636–41.PubMed
15.
go back to reference Welters MJP, van der Logt P, van den Eeden SJF, Kwapenberg KMC, Drijfhout JW, Fleuren GJ, et al. Detection of human papillomavirus type 18 E6 and E7-specific CD4+ T-helper 1 immunity in relation to health versus disease. Int J Cancer. 2006;118:950–6.PubMedCrossRef Welters MJP, van der Logt P, van den Eeden SJF, Kwapenberg KMC, Drijfhout JW, Fleuren GJ, et al. Detection of human papillomavirus type 18 E6 and E7-specific CD4+ T-helper 1 immunity in relation to health versus disease. Int J Cancer. 2006;118:950–6.PubMedCrossRef
16.
go back to reference Yamada R, Sasagawa T, Kirumbi LW, Kingoro A, Karanja DK, Kiptoo M, Nakitare GW, Ichimura H, Inoue M. Human papillomavirus infection and cervical abnormalities in Nairobi, Kenya, an area with a high prevalence of human immunodeficiency virus infection. J Med Virol. 2008;80:847–55.PubMedCrossRef Yamada R, Sasagawa T, Kirumbi LW, Kingoro A, Karanja DK, Kiptoo M, Nakitare GW, Ichimura H, Inoue M. Human papillomavirus infection and cervical abnormalities in Nairobi, Kenya, an area with a high prevalence of human immunodeficiency virus infection. J Med Virol. 2008;80:847–55.PubMedCrossRef
17.
go back to reference Rahman M, Sasagawa T, Yamada R, Kingoro A, Ichimura H, Makinoda S. High prevalence of intermediate-risk human papillomavirus infection in uterine cervices of Kenyan women infected with human immunodeficiency virus. J Med Virol. 2011;83:1988–96.PubMedCrossRef Rahman M, Sasagawa T, Yamada R, Kingoro A, Ichimura H, Makinoda S. High prevalence of intermediate-risk human papillomavirus infection in uterine cervices of Kenyan women infected with human immunodeficiency virus. J Med Virol. 2011;83:1988–96.PubMedCrossRef
18.
go back to reference Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15:259–67.PubMedCrossRef Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15:259–67.PubMedCrossRef
19.
go back to reference Koromilas AE, Li S, Matlashewski G. Control of interferon signaling in human papillomavirus infection. Cytokine Growth Factor Rev. 2001;12:157–70.PubMedCrossRef Koromilas AE, Li S, Matlashewski G. Control of interferon signaling in human papillomavirus infection. Cytokine Growth Factor Rev. 2001;12:157–70.PubMedCrossRef
20.
go back to reference Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, Ritter TM, Dondog B, Ly R, Bosch FX, Zawatzky R, Rösl F. Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells. Cancer Res. 2009;69:8718–25.PubMedCrossRef Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, Ritter TM, Dondog B, Ly R, Bosch FX, Zawatzky R, Rösl F. Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells. Cancer Res. 2009;69:8718–25.PubMedCrossRef
21.
go back to reference Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16 E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol. 2005;79:116–23.PubMedCrossRef Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16 E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol. 2005;79:116–23.PubMedCrossRef
22.
go back to reference Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmüller L, Rösl F. Regulation of MCP-1 chemokine transcription by p53. Mol Cancer. 2010;9:82–94.PubMedCrossRef Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmüller L, Rösl F. Regulation of MCP-1 chemokine transcription by p53. Mol Cancer. 2010;9:82–94.PubMedCrossRef
23.
go back to reference Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79:14852–62.PubMedCrossRef Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79:14852–62.PubMedCrossRef
24.
go back to reference Laffort C, Le Deist F, Favre M, Caillat-Zucman S, Radford-Weiss J, Debre M, et al. Severe cutaneous papillomavirus disease after haematopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common gammac cytokine receptor subunit or JAK-3 deficiency. Lancet. 2004;363:2051–4.PubMedCrossRef Laffort C, Le Deist F, Favre M, Caillat-Zucman S, Radford-Weiss J, Debre M, et al. Severe cutaneous papillomavirus disease after haematopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common gammac cytokine receptor subunit or JAK-3 deficiency. Lancet. 2004;363:2051–4.PubMedCrossRef
25.
go back to reference Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Dueñas MG, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186–94.PubMedCrossRef Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Dueñas MG, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186–94.PubMedCrossRef
26.
go back to reference Miura S, Kawana K, Schust DJ, Fujii T, Yokoyama T, Iwasawa Y, Nagamatsu T, Adachi K, Tomio A, Tomio K, Kojima S, Yasugi T, Kozuma S, Taketani Y. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol. 2010;84(22):11614–23.PubMedCrossRef Miura S, Kawana K, Schust DJ, Fujii T, Yokoyama T, Iwasawa Y, Nagamatsu T, Adachi K, Tomio A, Tomio K, Kojima S, Yasugi T, Kozuma S, Taketani Y. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol. 2010;84(22):11614–23.PubMedCrossRef
27.
go back to reference Fausch SC, Fahey LM, Da Silva DM, Kast WM. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J Immunol. 2005;174:7172–8.PubMed Fausch SC, Fahey LM, Da Silva DM, Kast WM. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J Immunol. 2005;174:7172–8.PubMed
28.
go back to reference Leong CM, Doorbar J, Nindl I, Yoon HS, Hibma MH. Deregulation of E-cadherin by human papillomavirus is not confined to high-risk, cancer-causing types. Br J Dermatol. 2010;163:1253–63.PubMedCrossRef Leong CM, Doorbar J, Nindl I, Yoon HS, Hibma MH. Deregulation of E-cadherin by human papillomavirus is not confined to high-risk, cancer-causing types. Br J Dermatol. 2010;163:1253–63.PubMedCrossRef
29.
go back to reference Nakagawa M, Stites DP, Farhat S, Sisler JR, Moss B, Kong F, Moscicki AB, Palefsky JM. Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. J Infect Dis. 1997;175:927–31.PubMedCrossRef Nakagawa M, Stites DP, Farhat S, Sisler JR, Moss B, Kong F, Moscicki AB, Palefsky JM. Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. J Infect Dis. 1997;175:927–31.PubMedCrossRef
30.
go back to reference Dillon S, Sasagawa T, Crawford A, Prestidge J, Inder MK, Jerram J, et al. Resolution of cervical dysplasia is associated with T-cell proliferative responses to human papillomavirus type 16 E2. J Gen Virol. 2007;88:803–13.PubMedCrossRef Dillon S, Sasagawa T, Crawford A, Prestidge J, Inder MK, Jerram J, et al. Resolution of cervical dysplasia is associated with T-cell proliferative responses to human papillomavirus type 16 E2. J Gen Virol. 2007;88:803–13.PubMedCrossRef
31.
go back to reference Nakagawa M, Gupta SK, Coleman HN, Sellers MA, Banken JA, Greenfield WW. A favorable clinical trend is associated with CD8 T-cell immune responses to the human papillomavirus type 16 e6 antigens in women being studied for abnormal pap smear results. J Low Genit Tract Dis. 2010;14:124–9.PubMedCrossRef Nakagawa M, Gupta SK, Coleman HN, Sellers MA, Banken JA, Greenfield WW. A favorable clinical trend is associated with CD8 T-cell immune responses to the human papillomavirus type 16 e6 antigens in women being studied for abnormal pap smear results. J Low Genit Tract Dis. 2010;14:124–9.PubMedCrossRef
32.
go back to reference Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, Miners K, Nunes C, Man S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42.PubMedCrossRef Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, Miners K, Nunes C, Man S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42.PubMedCrossRef
33.
go back to reference Tindle RW. Immune evasion in human papillomavirus associated cancer. Nat Rev Cancer. 2002;2:59–65.PubMedCrossRef Tindle RW. Immune evasion in human papillomavirus associated cancer. Nat Rev Cancer. 2002;2:59–65.PubMedCrossRef
34.
go back to reference Azar KK, Yasuda H, Tani M, Basha W, Sakai A, Inoue M, Sasagawa T. Increased secretion patterns of interleukin-10 and tumor necrosis factor-alpha in cervical squamous intraepithelial lesions. Hum Pathol. 2004;35:1376–84.PubMedCrossRef Azar KK, Yasuda H, Tani M, Basha W, Sakai A, Inoue M, Sasagawa T. Increased secretion patterns of interleukin-10 and tumor necrosis factor-alpha in cervical squamous intraepithelial lesions. Hum Pathol. 2004;35:1376–84.PubMedCrossRef
35.
go back to reference Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, et al. Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci. 2007;98:874–81.PubMedCrossRef Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, et al. Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci. 2007;98:874–81.PubMedCrossRef
36.
go back to reference Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer. 2010;102:1129–36.PubMedCrossRef Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer. 2010;102:1129–36.PubMedCrossRef
37.
go back to reference Sasagawa T, Inoue M, Yutsudo M, Tanizawa O, Hakura A. Identification of antibodies against HPV 16 E6 and E7 proteins in the sera of patient with cervical neoplasia. Jpn J Cancer Res. 1992;83:705–13.PubMedCrossRef Sasagawa T, Inoue M, Yutsudo M, Tanizawa O, Hakura A. Identification of antibodies against HPV 16 E6 and E7 proteins in the sera of patient with cervical neoplasia. Jpn J Cancer Res. 1992;83:705–13.PubMedCrossRef
38.
go back to reference Sasagawa T, Yamazaki H, Dong YZ, Satake S, Tateno M, Inoue M. Immunoglobulin-A and -G responses against virus-like particles (VLP) of human papillomavirus type 16 in women with cervical cancer and cervical intraepithelial lesions. Int J Cancer. 1998;75:529–35.PubMedCrossRef Sasagawa T, Yamazaki H, Dong YZ, Satake S, Tateno M, Inoue M. Immunoglobulin-A and -G responses against virus-like particles (VLP) of human papillomavirus type 16 in women with cervical cancer and cervical intraepithelial lesions. Int J Cancer. 1998;75:529–35.PubMedCrossRef
39.
go back to reference Sasagawa T, Rose RC, Azar KK, Sakai A, Inoue M. Mucosal immunoglobulin-A and -G responses to oncogenic human papilloma virus capsids. Int J Cancer. 2003;104:328–35.PubMedCrossRef Sasagawa T, Rose RC, Azar KK, Sakai A, Inoue M. Mucosal immunoglobulin-A and -G responses to oncogenic human papilloma virus capsids. Int J Cancer. 2003;104:328–35.PubMedCrossRef
40.
go back to reference Tiggelaar SM, Lin MJ, Viscidi RP, Ji J, Smith JS. Age-specific human papillomavirus antibody and deoxyribonucleic acid prevalence: a global review. J Adolesc Health. 2012;50:110–31.PubMedCrossRef Tiggelaar SM, Lin MJ, Viscidi RP, Ji J, Smith JS. Age-specific human papillomavirus antibody and deoxyribonucleic acid prevalence: a global review. J Adolesc Health. 2012;50:110–31.PubMedCrossRef
41.
go back to reference Kim S, Arduino JM, Roberts CC, Marsico M, Liaw KL, Skjeldestad FE. Incidence and predictors of human papillomavirus-6, -11, -16, and -18 infection in young Norwegian women. Sex Transm Dis. 2011;38:587–97.PubMedCrossRef Kim S, Arduino JM, Roberts CC, Marsico M, Liaw KL, Skjeldestad FE. Incidence and predictors of human papillomavirus-6, -11, -16, and -18 infection in young Norwegian women. Sex Transm Dis. 2011;38:587–97.PubMedCrossRef
42.
go back to reference Brotherton JM, Fridman M, May CL, Chappell G, Saville AM, Gertig DM. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet. 2011;377:2085–92.PubMedCrossRef Brotherton JM, Fridman M, May CL, Chappell G, Saville AM, Gertig DM. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet. 2011;377:2085–92.PubMedCrossRef
Metadata
Title
Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer
Authors
Toshiyuki Sasagawa
Hiroaki Takagi
Satoru Makinoda
Publication date
01-12-2012
Publisher
Springer Japan
Published in
Journal of Infection and Chemotherapy / Issue 6/2012
Print ISSN: 1341-321X
Electronic ISSN: 1437-7780
DOI
https://doi.org/10.1007/s10156-012-0485-5

Other articles of this Issue 6/2012

Journal of Infection and Chemotherapy 6/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.