Skip to main content
Top
Published in: International Journal of Clinical Oncology 7/2022

Open Access 10-05-2022 | Acute Myeloid Leukemia | Original Article

Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia

Authors: Yang Cao, Yue Liu, Limei Shang, Huijuan Chen, Yanhua Yue, Weimin Dong, Yanting Guo, Haonan Yang, Xiaojun Yang, Yan Liu, Weiying Gu, Xiaoying Zhang

Published in: International Journal of Clinical Oncology | Issue 7/2022

Login to get access

Abstract

Background

The clinical significance of miR-17 in patients with acute myeloid leukemia (AML) remains unknown.

Methods

Real-time quantitative reverse transcription-polymerase chain reaction (qPCR) was performed to detect the miR-17 expression in 115 de novo AML patients, 31 patients at complete remission (CR) time, 8 patients at relapse time and 30 normal controls.

Results

MiR-17 was upregulated in de novo AML compared with normal controls. Patients with high expression of miR-17 had less CEBPA double mutation, less favorable ELN-risk and lower CR rate. The level of miR-17 was significantly decreased at CR phase and was returned to primary level even higher when in relapse phase. In addition, Cox regression analysis revealed that miR-17 expression retained independent prognostic significance for overall survival (OS). Moreover, the gene-expression profile analysis of miR-17 in AML obtained from TCGA database was involved in multiple biological functions and signal pathways. Among the differential expressed genes (DEGs), we identified FGL2, PLAUR, SLC2A3, GPR65, CTSS, TLR7, S1PR3, OGFRL1, LILRB1, IL17RA, SIGLEC10, SLAMF7, PLXDC2, HPSE, TCF7 and MYCL as potential direct targets of miR-17 according to in silico analysis.

Conclusions

High expression of miR-17 in de novo AML patients pointed to dismal clinical outcome and disease recurrence, which could serve as novel prognostic biomarker for AML patients.
Literature
1.
go back to reference Marcucci G, Haferlach T, Dohner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29:475–486PubMedCrossRef Marcucci G, Haferlach T, Dohner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29:475–486PubMedCrossRef
2.
go back to reference Jorge AL, Pereira ER, Oliveira CS et al (2021) MicroRNAs: understanding their role in gene expression and cancer. Einstein 19:5996CrossRef Jorge AL, Pereira ER, Oliveira CS et al (2021) MicroRNAs: understanding their role in gene expression and cancer. Einstein 19:5996CrossRef
4.
go back to reference Gao HY, Wang W, Luo XG et al (2018) Screening of prognostic risk microRNAs for acute myeloid leukemia. Hematology 23:747–755PubMedCrossRef Gao HY, Wang W, Luo XG et al (2018) Screening of prognostic risk microRNAs for acute myeloid leukemia. Hematology 23:747–755PubMedCrossRef
5.
go back to reference Schwind S, Maharry K, Radmacher MD et al (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:5257–5264PubMedPubMedCentralCrossRef Schwind S, Maharry K, Radmacher MD et al (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:5257–5264PubMedPubMedCentralCrossRef
7.
go back to reference Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614PubMedPubMedCentralCrossRef Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614PubMedPubMedCentralCrossRef
8.
go back to reference Ley TJ, Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074PubMedCrossRef Ley TJ, Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074PubMedCrossRef
9.
go back to reference Lai M, Gonzalez-Martin A, Cooper AB et al (2016) Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun 7:12207PubMedPubMedCentralCrossRef Lai M, Gonzalez-Martin A, Cooper AB et al (2016) Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun 7:12207PubMedPubMedCentralCrossRef
10.
go back to reference Marcelis CL, Hol FA, Graham GE et al (2008) Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum Mutat 29:1125–1132PubMedCrossRef Marcelis CL, Hol FA, Graham GE et al (2008) Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum Mutat 29:1125–1132PubMedCrossRef
11.
go back to reference Carraro G, El-Hashash A, Guidolin D et al (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333:238–250PubMedPubMedCentralCrossRef Carraro G, El-Hashash A, Guidolin D et al (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333:238–250PubMedPubMedCentralCrossRef
12.
go back to reference Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedPubMedCentralCrossRef Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedPubMedCentralCrossRef
15.
go back to reference Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206PubMedCrossRef Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206PubMedCrossRef
16.
17.
go back to reference Xi XP, Zhuang J, Teng MJ et al (2016) MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med 38:499–506PubMedCrossRef Xi XP, Zhuang J, Teng MJ et al (2016) MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med 38:499–506PubMedCrossRef
18.
go back to reference Chen Q, Si Q, Xiao S et al (2013) Prognostic significance of serum miR-17-5p in lung cancer. Med Oncol 30:353PubMedCrossRef Chen Q, Si Q, Xiao S et al (2013) Prognostic significance of serum miR-17-5p in lung cancer. Med Oncol 30:353PubMedCrossRef
19.
go back to reference Willimott S, Wagner SD (2012) Stromal cells and CD40 ligand (CD154) alter the miRNome and induce miRNA clusters including, miR-125b/miR-99a/let-7c and miR-17-92 in chronic lymphocytic leukaemia. Leukemia 26:1113–1116PubMedCrossRef Willimott S, Wagner SD (2012) Stromal cells and CD40 ligand (CD154) alter the miRNome and induce miRNA clusters including, miR-125b/miR-99a/let-7c and miR-17-92 in chronic lymphocytic leukaemia. Leukemia 26:1113–1116PubMedCrossRef
20.
go back to reference Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Can Res 64:3087–3095CrossRef Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Can Res 64:3087–3095CrossRef
21.
22.
go back to reference Meenhuis A, van Veelen PA, de Looper H et al (2011) MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118:916–925PubMedPubMedCentralCrossRef Meenhuis A, van Veelen PA, de Looper H et al (2011) MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118:916–925PubMedPubMedCentralCrossRef
23.
go back to reference Li Z, Lu J, Sun M et al (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 105:15535–15540PubMedPubMedCentralCrossRef Li Z, Lu J, Sun M et al (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 105:15535–15540PubMedPubMedCentralCrossRef
24.
go back to reference Shao J, Li Y, Wu Q et al (2002) High frequency loss of heterozygosity on the long arms of chromosomes 13 and 14 in nasopharyngeal carcinoma in Southern China. Chin Med J 115:571–575PubMed Shao J, Li Y, Wu Q et al (2002) High frequency loss of heterozygosity on the long arms of chromosomes 13 and 14 in nasopharyngeal carcinoma in Southern China. Chin Med J 115:571–575PubMed
25.
go back to reference Zhang X, Ladd A, Dragoescu E et al (2009) MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metas 26:965–979CrossRef Zhang X, Ladd A, Dragoescu E et al (2009) MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metas 26:965–979CrossRef
26.
go back to reference Gong AY, Eischeid AN, Xiao J et al (2012) miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 12:492PubMedPubMedCentralCrossRef Gong AY, Eischeid AN, Xiao J et al (2012) miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 12:492PubMedPubMedCentralCrossRef
27.
go back to reference Wangzhou K, Fu W, Li M et al (2021) microRNA-17 is a tumor suppressor in oral squamous cell carcinoma and is repressed by LSD1. Oral diseases Wangzhou K, Fu W, Li M et al (2021) microRNA-17 is a tumor suppressor in oral squamous cell carcinoma and is repressed by LSD1. Oral diseases
28.
go back to reference An X, Ma K, Zhang Z et al (2016) miR-17, miR-21, and miR-143 enhance adipogenic differentiation from porcine bone marrow-derived mesenchymal stem cells. DNA Cell Biol 35:410–416PubMedCrossRef An X, Ma K, Zhang Z et al (2016) miR-17, miR-21, and miR-143 enhance adipogenic differentiation from porcine bone marrow-derived mesenchymal stem cells. DNA Cell Biol 35:410–416PubMedCrossRef
29.
go back to reference Calura E, Pizzini S, Bisognin A et al (2016) A data-driven network model of primary myelofibrosis: transcriptional and post-transcriptional alterations in CD34+ cells. Blood Cancer J 6:439CrossRef Calura E, Pizzini S, Bisognin A et al (2016) A data-driven network model of primary myelofibrosis: transcriptional and post-transcriptional alterations in CD34+ cells. Blood Cancer J 6:439CrossRef
30.
go back to reference Faraoni I, Laterza S, Ardiri D et al (2012) MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status. J Hematol Oncol 5:26PubMedPubMedCentralCrossRef Faraoni I, Laterza S, Ardiri D et al (2012) MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status. J Hematol Oncol 5:26PubMedPubMedCentralCrossRef
31.
go back to reference Mian YA, Zeleznik-Le NJ (2016) The miR-17∼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leuk Res 46:51–60PubMedPubMedCentralCrossRef Mian YA, Zeleznik-Le NJ (2016) The miR-17∼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leuk Res 46:51–60PubMedPubMedCentralCrossRef
32.
go back to reference Meyer C, Kowarz E, Hofmann J et al (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–1499PubMedCrossRef Meyer C, Kowarz E, Hofmann J et al (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–1499PubMedCrossRef
34.
go back to reference Bernard OA, Berger R (1995) Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes Chromosomes Cancer 13:75–85PubMedCrossRef Bernard OA, Berger R (1995) Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes Chromosomes Cancer 13:75–85PubMedCrossRef
35.
go back to reference Bower M, Parry P, Carter M et al (1994) Prevalence and clinical correlations of MLL gene rearrangements in AML-M4/5. Blood 84:3776–3780PubMedCrossRef Bower M, Parry P, Carter M et al (1994) Prevalence and clinical correlations of MLL gene rearrangements in AML-M4/5. Blood 84:3776–3780PubMedCrossRef
36.
go back to reference Pigneux A, Labopin M, Maertens J et al (2015) Outcome of allogeneic hematopoietic stem-cell transplantation for adult patients with AML and 11q23/MLL rearrangement (MLL-r AML). Leukemia 29:2375–2381PubMedCrossRef Pigneux A, Labopin M, Maertens J et al (2015) Outcome of allogeneic hematopoietic stem-cell transplantation for adult patients with AML and 11q23/MLL rearrangement (MLL-r AML). Leukemia 29:2375–2381PubMedCrossRef
37.
go back to reference Zotova OV, Lukianova AS, Valchuk MO et al (2021) 11q23/MLL rearrangements in adult acute leukemia. Exp Oncol 43:229–233PubMed Zotova OV, Lukianova AS, Valchuk MO et al (2021) 11q23/MLL rearrangements in adult acute leukemia. Exp Oncol 43:229–233PubMed
38.
go back to reference Donnard M, Guglielmi L, Turlure P et al (2002) Membrane and intracellular platelet-activating factor receptor expression in leukemic blasts of patients with acute myeloid and lymphoid leukemia. Stem cells (Dayton, Ohio) 20:394–401CrossRef Donnard M, Guglielmi L, Turlure P et al (2002) Membrane and intracellular platelet-activating factor receptor expression in leukemic blasts of patients with acute myeloid and lymphoid leukemia. Stem cells (Dayton, Ohio) 20:394–401CrossRef
39.
go back to reference Fiedler ERC, Bhutkar A, Lawler E et al (2018) In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1(+) BCP-ALL. Blood Adv 2:1229–1242PubMedPubMedCentralCrossRef Fiedler ERC, Bhutkar A, Lawler E et al (2018) In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1(+) BCP-ALL. Blood Adv 2:1229–1242PubMedPubMedCentralCrossRef
40.
go back to reference da Silva IA, Chammas R, Lepique AP et al (2017) Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis 6:296CrossRef da Silva IA, Chammas R, Lepique AP et al (2017) Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis 6:296CrossRef
41.
go back to reference Ge F, Zhang P, Niu J et al (2020) NDRG2 and TLR7 as novel DNA methylation prognostic signatures for acute myelocytic leukemia. J Cell Physiol 235:3790–3797PubMedCrossRef Ge F, Zhang P, Niu J et al (2020) NDRG2 and TLR7 as novel DNA methylation prognostic signatures for acute myelocytic leukemia. J Cell Physiol 235:3790–3797PubMedCrossRef
42.
go back to reference Xie SZ, Kaufmann KB, Wang W et al (2021) Sphingosine-1-phosphate receptor 3 potentiates inflammatory programs in normal and leukemia stem cells to promote differentiation. Blood cancer discovery 2:32–53PubMedCrossRef Xie SZ, Kaufmann KB, Wang W et al (2021) Sphingosine-1-phosphate receptor 3 potentiates inflammatory programs in normal and leukemia stem cells to promote differentiation. Blood cancer discovery 2:32–53PubMedCrossRef
43.
go back to reference Gao X, Wu T, Johnson KD et al (2016) GATA Factor-G-protein-coupled receptor circuit suppresses hematopoiesis. Stem Cell Rep 6:368–382CrossRef Gao X, Wu T, Johnson KD et al (2016) GATA Factor-G-protein-coupled receptor circuit suppresses hematopoiesis. Stem Cell Rep 6:368–382CrossRef
44.
go back to reference Hadad EH, Ahmadzadeh A, Abooali A et al (2020) Prognostic role and therapeutic susceptibility of cathepsin in various types of solid tumor and leukemia: a systematic review. J Cell Physiol 235:7709–7730PubMedCrossRef Hadad EH, Ahmadzadeh A, Abooali A et al (2020) Prognostic role and therapeutic susceptibility of cathepsin in various types of solid tumor and leukemia: a systematic review. J Cell Physiol 235:7709–7730PubMedCrossRef
45.
go back to reference Ramage JG, Vallera DA, Black JH et al (2003) The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res 27:79–84PubMedCrossRef Ramage JG, Vallera DA, Black JH et al (2003) The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res 27:79–84PubMedCrossRef
46.
go back to reference Graf M, Reif S, Hecht K et al (2005) High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol 79:26–35PubMedCrossRef Graf M, Reif S, Hecht K et al (2005) High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol 79:26–35PubMedCrossRef
47.
go back to reference Pliszka M, Szablewski L (2021) Glucose transporters as a target for anticancer therapy. Cancers (Basel) 13 Pliszka M, Szablewski L (2021) Glucose transporters as a target for anticancer therapy. Cancers (Basel) 13
48.
go back to reference Liu J, Hong J, Han H et al (2020) Decreased vitamin C uptake mediated by SLC2A3 promotes leukaemia progression and impedes TET2 restoration. Br J Cancer 122:1445–1452PubMedPubMedCentralCrossRef Liu J, Hong J, Han H et al (2020) Decreased vitamin C uptake mediated by SLC2A3 promotes leukaemia progression and impedes TET2 restoration. Br J Cancer 122:1445–1452PubMedPubMedCentralCrossRef
Metadata
Title
Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia
Authors
Yang Cao
Yue Liu
Limei Shang
Huijuan Chen
Yanhua Yue
Weimin Dong
Yanting Guo
Haonan Yang
Xiaojun Yang
Yan Liu
Weiying Gu
Xiaoying Zhang
Publication date
10-05-2022
Publisher
Springer Nature Singapore
Published in
International Journal of Clinical Oncology / Issue 7/2022
Print ISSN: 1341-9625
Electronic ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-022-02161-5

Other articles of this Issue 7/2022

International Journal of Clinical Oncology 7/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine