Skip to main content
Top
Published in: Lasers in Medical Science 9/2022

13-10-2022 | Phototherapy | Original Article

NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels

Authors: Leila Gholami, Saeid Afshar, Aliasghar Arkian, Masood Saeidijam, Seyedeh Sareh Hendi, Roghayeh Mahmoudi, Khatereh Khorsandi, Hadi Hashemzehi, Reza Fekrazad

Published in: Lasers in Medical Science | Issue 9/2022

Login to get access

Abstract

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L −), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).
Literature
5.
go back to reference Tomar GB, Dave J, Chandekar S, Bhattacharya N, Naik S, Kulkarni S et al (2020) Advances in tissue engineering approaches for craniomaxillofacial bone reconstruction. Tissue Engineering and the 5 R's-Reconstruction, Restoration, Replacement, Repair and Regeneration. IntechOpen Tomar GB, Dave J, Chandekar S, Bhattacharya N, Naik S, Kulkarni S et al (2020) Advances in tissue engineering approaches for craniomaxillofacial bone reconstruction. Tissue Engineering and the 5 R's-Reconstruction, Restoration, Replacement, Repair and Regeneration. IntechOpen
6.
go back to reference Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3):286–289PubMedCrossRef Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3):286–289PubMedCrossRef
7.
go back to reference Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRef Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRef
8.
go back to reference Shiraishi T, Sumita Y, Wakamastu Y, Nagai K, Asahina I (2012) Formation of engineered bone with adipose stromal cells from buccal fat pad. J Dent Res 91(6):592–597PubMedCrossRef Shiraishi T, Sumita Y, Wakamastu Y, Nagai K, Asahina I (2012) Formation of engineered bone with adipose stromal cells from buccal fat pad. J Dent Res 91(6):592–597PubMedCrossRef
9.
go back to reference Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150–154PubMedCrossRef Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150–154PubMedCrossRef
10.
go back to reference Farré-Guasch E, Martí-Pagès C, Hernández-Alfaro F, Klein-Nulend J, Casals N (2010) Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: an in vitro study. Tissue Eng Part C Methods 16(5):1083–1094PubMedCrossRef Farré-Guasch E, Martí-Pagès C, Hernández-Alfaro F, Klein-Nulend J, Casals N (2010) Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: an in vitro study. Tissue Eng Part C Methods 16(5):1083–1094PubMedCrossRef
11.
go back to reference Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemotherapy 43(4):268–274CrossRef Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemotherapy 43(4):268–274CrossRef
12.
go back to reference Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRef Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRef
13.
go back to reference Takahashi H, Ishikawa H, Tanaka A (2017) Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell 30(2):60–71PubMedCrossRef Takahashi H, Ishikawa H, Tanaka A (2017) Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell 30(2):60–71PubMedCrossRef
14.
go back to reference Kishimoto N, Momota Y, Hashimoto Y, Tatsumi S, Ando K, Omasa T et al (2014) The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Invest 18(8):1893–1901CrossRef Kishimoto N, Momota Y, Hashimoto Y, Tatsumi S, Ando K, Omasa T et al (2014) The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Invest 18(8):1893–1901CrossRef
15.
go back to reference Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E et al (2013) Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 4(6):1–11CrossRef Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E et al (2013) Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 4(6):1–11CrossRef
16.
go back to reference Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T et al (2016) Small buccal fat pad cells have high osteogenic differentiation potential. Tissue Eng Part C Methods 22(3):250–259PubMedCrossRef Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T et al (2016) Small buccal fat pad cells have high osteogenic differentiation potential. Tissue Eng Part C Methods 22(3):250–259PubMedCrossRef
17.
go back to reference Khojasteh A, Sadeghi N (2016) Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg 45(7):864–871PubMedCrossRef Khojasteh A, Sadeghi N (2016) Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg 45(7):864–871PubMedCrossRef
18.
go back to reference Khojasteh A, Kheiri L, Behnia H, Tehranchi A, Nazeman P, Nadjmi N et al (2017) Lateral ramus cortical bone plate in alveolar cleft osteoplasty with concomitant use of buccal fat pad derived cells and autogenous bone: phase I clinical trial. BioMed Res Int. Khojasteh A, Kheiri L, Behnia H, Tehranchi A, Nazeman P, Nadjmi N et al (2017) Lateral ramus cortical bone plate in alveolar cleft osteoplasty with concomitant use of buccal fat pad derived cells and autogenous bone: phase I clinical trial. BioMed Res Int.
19.
go back to reference Salehi-Nik N, Rezai Rad M, Kheiri L, Nazeman P, Nadjmi N, Khojasteh A (2017) Buccal fat pad as a potential source of stem cells for bone regeneration: a literature review. Stem Cells Int. Salehi-Nik N, Rezai Rad M, Kheiri L, Nazeman P, Nadjmi N, Khojasteh A (2017) Buccal fat pad as a potential source of stem cells for bone regeneration: a literature review. Stem Cells Int.
22.
go back to reference Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. International Society for Optics and Photonics, Mechanisms for low-light therapyCrossRef Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. International Society for Optics and Photonics, Mechanisms for low-light therapyCrossRef
23.
go back to reference Fekrazad R, Asefi S, Allahdadi M, Kalhori KA (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34(11):533–542PubMedCrossRef Fekrazad R, Asefi S, Allahdadi M, Kalhori KA (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34(11):533–542PubMedCrossRef
24.
go back to reference Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282PubMedCrossRef Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282PubMedCrossRef
25.
go back to reference de Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev Rep 7(4):869–882PubMedCrossRef de Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev Rep 7(4):869–882PubMedCrossRef
26.
go back to reference Ong W-K, Chen H-F, Tsai C-T, Fu Y-J, Wong Y-S, Yen D-J et al (2013) The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34(8):1911–1920PubMedCrossRef Ong W-K, Chen H-F, Tsai C-T, Fu Y-J, Wong Y-S, Yen D-J et al (2013) The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34(8):1911–1920PubMedCrossRef
27.
go back to reference de Andrade ALM, Luna GF, Brassolatti P, Leite MN, Parisi JR, de Oliveira Leal ÂM et al (2019) Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 34(4):677–683PubMedCrossRef de Andrade ALM, Luna GF, Brassolatti P, Leite MN, Parisi JR, de Oliveira Leal ÂM et al (2019) Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 34(4):677–683PubMedCrossRef
28.
go back to reference Ginani F, Soares DM, Rocha HADO, Barboza CAG (2017) Low-level laser irradiation promotes proliferation of cryopreserved adipose-derived stem cells. Einstein (São Paulo) 15:334–338PubMedCrossRef Ginani F, Soares DM, Rocha HADO, Barboza CAG (2017) Low-level laser irradiation promotes proliferation of cryopreserved adipose-derived stem cells. Einstein (São Paulo) 15:334–338PubMedCrossRef
29.
go back to reference Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S et al (2019) Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol, B 201:111658PubMedCrossRef Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S et al (2019) Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol, B 201:111658PubMedCrossRef
30.
go back to reference Choi K, Kang BJ, Kim H, Lee S, Bae S, Kweon OK et al (2013) Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed Mater Res B Appl Biomater 101(6):919–928PubMedCrossRef Choi K, Kang BJ, Kim H, Lee S, Bae S, Kweon OK et al (2013) Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed Mater Res B Appl Biomater 101(6):919–928PubMedCrossRef
31.
go back to reference Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I et al (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3):138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I et al (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3):138–146PubMedCrossRef
32.
go back to reference Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N et al (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 8(1):e001033PubMedPubMedCentralCrossRef Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N et al (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 8(1):e001033PubMedPubMedCentralCrossRef
33.
go back to reference Bayat M, Chien S (2020) Combined adipose-derived mesenchymal stem cells and Photobiomodulation could modulate the inflammatory response and treat infected diabetic foot ulcers, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New Bayat M, Chien S (2020) Combined adipose-derived mesenchymal stem cells and Photobiomodulation could modulate the inflammatory response and treat infected diabetic foot ulcers, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New
34.
go back to reference Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099PubMedCrossRef Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099PubMedCrossRef
35.
go back to reference Karu TI, Kolyakov S (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361PubMedCrossRef Karu TI, Kolyakov S (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361PubMedCrossRef
36.
go back to reference Pastore MG, Passarella SD (2000) Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 76(6):863–870PubMedCrossRef Pastore MG, Passarella SD (2000) Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 76(6):863–870PubMedCrossRef
37.
go back to reference Sommer AP, Schemmer P, Pavláth AE, Försterling H-D, Mester ÁR, Trelles MA (2020) Quantum biology in low level light therapy: death of a dogma. Ann Transl Med 8(7) Sommer AP, Schemmer P, Pavláth AE, Försterling H-D, Mester ÁR, Trelles MA (2020) Quantum biology in low level light therapy: death of a dogma. Ann Transl Med 8(7)
38.
go back to reference Cao E (2020) Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 152(3) Cao E (2020) Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 152(3)
40.
go back to reference Ogawa N, Kurokawa T, Mori Y (2016) Sensing of redox status by TRP channels. Cell Calcium 60(2):115–122PubMedCrossRef Ogawa N, Kurokawa T, Mori Y (2016) Sensing of redox status by TRP channels. Cell Calcium 60(2):115–122PubMedCrossRef
41.
go back to reference Cronin MA, Lieu M-H, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 119(14):2935–2944PubMedCrossRef Cronin MA, Lieu M-H, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 119(14):2935–2944PubMedCrossRef
42.
go back to reference Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA (2015) Functional and physiopathological implications of TRP channels. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1853(8):1772–1782 Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA (2015) Functional and physiopathological implications of TRP channels. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1853(8):1772–1782
43.
go back to reference de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364CrossRef de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364CrossRef
44.
go back to reference Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD et al (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42(6):450–466PubMedPubMedCentralCrossRef Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD et al (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42(6):450–466PubMedPubMedCentralCrossRef
45.
go back to reference Kim HB, Baik KY, Choung P-H, Chung JH (2017) Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 7(1):1–12 Kim HB, Baik KY, Choung P-H, Chung JH (2017) Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 7(1):1–12
52.
go back to reference Huang Y-Y, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose-Response 9(4): dose-response. 11–009. Hamblin Huang Y-Y, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose-Response 9(4): dose-response. 11–009. Hamblin
53.
go back to reference Cheng K, Martin LF, Slepian MJ, Patwardhan AM, Ibrahim MM (2021) Mechanisms and pathways of pain photobiomodulation: a narrative review. J Pain Cheng K, Martin LF, Slepian MJ, Patwardhan AM, Ibrahim MM (2021) Mechanisms and pathways of pain photobiomodulation: a narrative review. J Pain
54.
go back to reference Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A et al (2020) Photobiomodulation—underlying mechanism and clinical applications. J Clin Med 9(6):1724PubMedPubMedCentralCrossRef Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A et al (2020) Photobiomodulation—underlying mechanism and clinical applications. J Clin Med 9(6):1724PubMedPubMedCentralCrossRef
55.
go back to reference Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18(12):128001PubMedCrossRef Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18(12):128001PubMedCrossRef
56.
go back to reference Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, García-Martínez O (2014) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16(2):191–196PubMedCrossRef Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, García-Martínez O (2014) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16(2):191–196PubMedCrossRef
57.
go back to reference Santana-Blank LA, Rodríguez-Santana E, Santana-Rodríguez KE (2005) Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses. Photomed Laser Ther 23(4):416–424CrossRef Santana-Blank LA, Rodríguez-Santana E, Santana-Rodríguez KE (2005) Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses. Photomed Laser Ther 23(4):416–424CrossRef
63.
go back to reference Keshri GK, Gupta A, Yadav A, Sharma SK, Singh SB (2016) Photobiomodulation with pulsed and continuous wave near-infrared laser (810 nm, Al-Ga-As) augments dermal wound healing in immunosuppressed rats. PLoS One 11(11):e0166705PubMedPubMedCentralCrossRef Keshri GK, Gupta A, Yadav A, Sharma SK, Singh SB (2016) Photobiomodulation with pulsed and continuous wave near-infrared laser (810 nm, Al-Ga-As) augments dermal wound healing in immunosuppressed rats. PLoS One 11(11):e0166705PubMedPubMedCentralCrossRef
64.
go back to reference Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB et al (2011) Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6(10):e26212PubMedPubMedCentralCrossRef Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB et al (2011) Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6(10):e26212PubMedPubMedCentralCrossRef
66.
go back to reference Bayat M, Azari A, Golmohammadi MG (2010) Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg 28(4):465–470PubMedCrossRef Bayat M, Azari A, Golmohammadi MG (2010) Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg 28(4):465–470PubMedCrossRef
67.
go back to reference AlWattar WM (2021) Effect of low energy laser on the healing of tooth extraction wound:(Histological Study in Rat). Iraqi J Laser 20(1):30–38 AlWattar WM (2021) Effect of low energy laser on the healing of tooth extraction wound:(Histological Study in Rat). Iraqi J Laser 20(1):30–38
68.
go back to reference Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277PubMedCrossRef Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277PubMedCrossRef
69.
go back to reference Bruderer M, Richards R, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28(28):269–286PubMedCrossRef Bruderer M, Richards R, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28(28):269–286PubMedCrossRef
70.
go back to reference Hoemann C, El-Gabalawy H, McKee M (2009) In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol 57(4):318–323PubMedCrossRef Hoemann C, El-Gabalawy H, McKee M (2009) In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol 57(4):318–323PubMedCrossRef
71.
go back to reference Komori T (2003) Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 21(4):193–197PubMed Komori T (2003) Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 21(4):193–197PubMed
72.
go back to reference Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29PubMedCrossRef Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29PubMedCrossRef
73.
go back to reference Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F (2014) Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 289(39):27105–27117PubMedPubMedCentralCrossRef Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F (2014) Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 289(39):27105–27117PubMedPubMedCentralCrossRef
74.
go back to reference Ortuño MJ, Ruiz-Gaspà S, Rodríguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL et al (2010) p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 285(42):31985–31994PubMedPubMedCentralCrossRef Ortuño MJ, Ruiz-Gaspà S, Rodríguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL et al (2010) p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 285(42):31985–31994PubMedPubMedCentralCrossRef
75.
go back to reference Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):1–11CrossRef Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):1–11CrossRef
76.
go back to reference Marwaha L, Bansal Y, Singh R, Saroj P, Bhandari R, Kuhad A (2016) TRP channels: potential drug target for neuropathic pain. Inflammopharmacology 24(6):305–317PubMedCrossRef Marwaha L, Bansal Y, Singh R, Saroj P, Bhandari R, Kuhad A (2016) TRP channels: potential drug target for neuropathic pain. Inflammopharmacology 24(6):305–317PubMedCrossRef
78.
go back to reference Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1772(8):989–1003. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1772(8):989–1003.
79.
go back to reference Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochimica et Biophysica Acta (BBA)-Gen Subj 1861(2):441–449 Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochimica et Biophysica Acta (BBA)-Gen Subj 1861(2):441–449
80.
go back to reference Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6(1):1–9 Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6(1):1–9
81.
go back to reference Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 22(1):9–13PubMedCrossRef Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 22(1):9–13PubMedCrossRef
Metadata
Title
NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels
Authors
Leila Gholami
Saeid Afshar
Aliasghar Arkian
Masood Saeidijam
Seyedeh Sareh Hendi
Roghayeh Mahmoudi
Khatereh Khorsandi
Hadi Hashemzehi
Reza Fekrazad
Publication date
13-10-2022
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 9/2022
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03652-7

Other articles of this Issue 9/2022

Lasers in Medical Science 9/2022 Go to the issue