Skip to main content
Top
Published in: Lasers in Medical Science 1/2020

01-02-2020 | Melanoma | Original Article

Utilizing 808 nm laser for sensitizing of melanoma tumors to megavoltage radiation therapy

Authors: Amirhosein Kefayat, Fatemeh Ghahremani, Navid Taheri, Alireza Amouheidari, Seyed Mehdi Okhravi

Published in: Lasers in Medical Science | Issue 1/2020

Login to get access

Abstract

Melanotic melanoma has high content of melanin and laser can destroy melanin-containing cells through thermal effect. In this study, the therapeutic effect of 808 nm laser therapy was investigated on B16-F10 melanoma tumor growth and tumor-bearing mice survival time. In addition, as laser can destroy melanin as the main cause of melanoma radioresistance, the effect of laser administration to enhance radiation therapy efficacy at B16-F10 cancer cells was evaluated in vitro and in vivo. Laser therapy (1 W/cm2 × 4 min) could cause significant (P < 0.05) inhibition of melanoma tumors’ growth (~ 61%) and about three times increase of the tumor-bearing mice survival time in comparison with no-treatment group. In addition, the mice which were treated with 1 W/cm2 × 4 min laser administration plus 6 Gy megavoltage radiation therapy exhibited ~ 68% lesser tumors’ volume and 27 days increase of survival time in comparison with 6 Gy irradiated tumor-bearing mice. Also, significantly higher (P < 0.05) tumor necrosis percentage was observed at the histopathological slides of 1 W/cm2 × 4 min laser + RT treated mice tumors (57 ± 12%) in comparison with radiation therapy group (31 ± 10%). Therefore, not only laser therapy can inhibit melanoma tumors’ growth per se but also its combination with radiation therapy can cause a significant enhancement of radiation therapy efficacy. The laser administration can be used as a radiosensitizing method for melanotic melanoma radiation therapy.
Literature
1.
go back to reference Regazzetti C, De Donatis GM, Ghorbel HH, Cardot-Leccia N, Ambrosetti D, Bahadoran P et al (2015) Endothelial cells promote pigmentation through endothelin receptor B activation. J Investig Dermatol 135(12):3096–3104PubMedCrossRef Regazzetti C, De Donatis GM, Ghorbel HH, Cardot-Leccia N, Ambrosetti D, Bahadoran P et al (2015) Endothelial cells promote pigmentation through endothelin receptor B activation. J Investig Dermatol 135(12):3096–3104PubMedCrossRef
2.
go back to reference Cichorek M, Wachulska M, Stasiewicz A, Tymińska A (2013) Skin melanocytes: biology and development. Adv Dermatol Allergol 30(1):30CrossRef Cichorek M, Wachulska M, Stasiewicz A, Tymińska A (2013) Skin melanocytes: biology and development. Adv Dermatol Allergol 30(1):30CrossRef
3.
go back to reference Bandarchi B, Ma L, Navab R, Seth A, Rasty G (2010) From melanocyte to metastatic malignant melanoma. Dermatol Res Pract 2010 Bandarchi B, Ma L, Navab R, Seth A, Rasty G (2010) From melanocyte to metastatic malignant melanoma. Dermatol Res Pract 2010
4.
go back to reference Bandarchi B, Jabbari CA, Vedadi A, Navab R (2013) Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol 66(8):644–648PubMedCrossRef Bandarchi B, Jabbari CA, Vedadi A, Navab R (2013) Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol 66(8):644–648PubMedCrossRef
5.
go back to reference Guy GP Jr, Thomas CC, Thompson T, Watson M, Massetti GM, Richardson LC (2015) Vital signs: melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb Mortal Wkly Rep 64(21):591PubMedPubMedCentral Guy GP Jr, Thomas CC, Thompson T, Watson M, Massetti GM, Richardson LC (2015) Vital signs: melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb Mortal Wkly Rep 64(21):591PubMedPubMedCentral
6.
go back to reference Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA (2009) Increasing burden of melanoma in the United States. J Investig Dermatol 129(7):1666–1674PubMedCrossRef Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA (2009) Increasing burden of melanoma in the United States. J Investig Dermatol 129(7):1666–1674PubMedCrossRef
7.
go back to reference Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH (2018) AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv 8(8):4249–4258CrossRef Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH (2018) AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv 8(8):4249–4258CrossRef
8.
go back to reference Khan MK, Khan N, Almasan A, Macklis R (2011) Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents. OncoTargets Ther 4:137CrossRef Khan MK, Khan N, Almasan A, Macklis R (2011) Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents. OncoTargets Ther 4:137CrossRef
10.
go back to reference Feller L, Masilana A, Khammissa RA, Altini M, Jadwat Y, Lemmer J (2014) Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation. Head Face Med 10(1):8PubMedPubMedCentralCrossRef Feller L, Masilana A, Khammissa RA, Altini M, Jadwat Y, Lemmer J (2014) Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation. Head Face Med 10(1):8PubMedPubMedCentralCrossRef
11.
go back to reference Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155–1228PubMedCrossRef Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155–1228PubMedCrossRef
13.
go back to reference Brożyna AA, Jóźwicki W, Roszkowski K, Filipiak J, Slominski AT (2016) Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 7(14):17844PubMedPubMedCentralCrossRef Brożyna AA, Jóźwicki W, Roszkowski K, Filipiak J, Slominski AT (2016) Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 7(14):17844PubMedPubMedCentralCrossRef
14.
go back to reference Brożyna AA, VanMiddlesworth L, Slominski AT (2008) Inhibition of melanogenesis as a radiation sensitizer for melanoma therapy. Int J Cancer 123(6):1448–1456PubMedCrossRef Brożyna AA, VanMiddlesworth L, Slominski AT (2008) Inhibition of melanogenesis as a radiation sensitizer for melanoma therapy. Int J Cancer 123(6):1448–1456PubMedCrossRef
15.
go back to reference Urbanska K, Romanowska-Dixon B, Elas M, Pajak S, Paziewski E, Bryk J et al (2000) Experimental ruthenium plaque therapy of amelanotic and melanotic melanomas in the hamster eye. Melanoma Res 10(1):26–35PubMedCrossRef Urbanska K, Romanowska-Dixon B, Elas M, Pajak S, Paziewski E, Bryk J et al (2000) Experimental ruthenium plaque therapy of amelanotic and melanotic melanomas in the hamster eye. Melanoma Res 10(1):26–35PubMedCrossRef
16.
go back to reference Sharma SK, Huang Y-Y, Hamblin MR (2015) Melanoma resistance to photodynamic therapy. Resistance to photodynamic therapy in cancer. Springer, pp 229–246 Sharma SK, Huang Y-Y, Hamblin MR (2015) Melanoma resistance to photodynamic therapy. Resistance to photodynamic therapy in cancer. Springer, pp 229–246
17.
go back to reference Tanzi EL, Lupton JR, Alster TS (2003) Lasers in dermatology: four decades of progress. J Am Acad Dermatol 49(1):1–34PubMedCrossRef Tanzi EL, Lupton JR, Alster TS (2003) Lasers in dermatology: four decades of progress. J Am Acad Dermatol 49(1):1–34PubMedCrossRef
18.
go back to reference Jawad MM, Qader STA, Zaidan A, Zaidan B, Naji A, Qader ITA (2011) An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users. Int J Pharmacol 7(2):149–160CrossRef Jawad MM, Qader STA, Zaidan A, Zaidan B, Naji A, Qader ITA (2011) An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users. Int J Pharmacol 7(2):149–160CrossRef
19.
go back to reference Tseng S-H, Bargo P, Durkin A, Kollias N (2009) Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express 17(17):14599–14617PubMedPubMedCentralCrossRef Tseng S-H, Bargo P, Durkin A, Kollias N (2009) Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express 17(17):14599–14617PubMedPubMedCentralCrossRef
20.
go back to reference Husain Z, Alster TS (2016) The role of lasers and intense pulsed light technology in dermatology. Clin Cosmet Investig Dermatol 9:29PubMedPubMedCentral Husain Z, Alster TS (2016) The role of lasers and intense pulsed light technology in dermatology. Clin Cosmet Investig Dermatol 9:29PubMedPubMedCentral
21.
go back to reference Haywood RM, Linge C (2004) Differences in production of melanin radicals by 694 nm ruby laser and UVA radiation. Lasers Surg Med 35(1):77–83PubMedCrossRef Haywood RM, Linge C (2004) Differences in production of melanin radicals by 694 nm ruby laser and UVA radiation. Lasers Surg Med 35(1):77–83PubMedCrossRef
22.
23.
go back to reference Ibrahim K, Al-Mutary M, Bakhiet A, Khan HJM (2018) Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. 23(8):1848 Ibrahim K, Al-Mutary M, Bakhiet A, Khan HJM (2018) Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. 23(8):1848
24.
go back to reference Chen Y, Taghian AG, Rosenberg AE, O’Connell J, Okunieff P, Suit HDJIjoc. Predictive value of histologic tumor necrosis after radiation. 2001; 96 (6):334–340 Chen Y, Taghian AG, Rosenberg AE, O’Connell J, Okunieff P, Suit HDJIjoc. Predictive value of histologic tumor necrosis after radiation. 2001; 96 (6):334–340
25.
go back to reference Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV et al (2016) Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 7(1):8PubMedPubMedCentralCrossRef Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV et al (2016) Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 7(1):8PubMedPubMedCentralCrossRef
26.
go back to reference Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728PubMedCrossRef Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728PubMedCrossRef
27.
go back to reference Linam J, Yang L-X (2015) Recent developments in radiosensitization. 35(5):2479–2485 Linam J, Yang L-X (2015) Recent developments in radiosensitization. 35(5):2479–2485
28.
go back to reference Mileo AM, Mattei E, Fanuele M, Delpino A, Ferrini UJP (1989) Differential radiosensitivity in cultured B-16 melanoma cells following interrupted melanogenesis induced by glucosamine. 2(3):167–170 Mileo AM, Mattei E, Fanuele M, Delpino A, Ferrini UJP (1989) Differential radiosensitivity in cultured B-16 melanoma cells following interrupted melanogenesis induced by glucosamine. 2(3):167–170
29.
go back to reference Slominski A, Zbytek B, Slominski RJIjoc. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. 2009; 124 (6):1470–1477 Slominski A, Zbytek B, Slominski RJIjoc. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. 2009; 124 (6):1470–1477
31.
go back to reference Rosa DSA, Aranha ACC, de Paula Eduardo C, Aoki A (2007) Esthetic treatment of gingival melanin hyperpigmentation with Er: YAG laser: short-term clinical observations and patient follow-up. J Periodontol 78(10):2018–2025PubMedCrossRef Rosa DSA, Aranha ACC, de Paula Eduardo C, Aoki A (2007) Esthetic treatment of gingival melanin hyperpigmentation with Er: YAG laser: short-term clinical observations and patient follow-up. J Periodontol 78(10):2018–2025PubMedCrossRef
32.
go back to reference Margolis RJ, Dover JS, Polla LL, Watanabe S, Shea CR, Hruza GJ et al (1989) Visible action spectrum for melanin-specific selective photothermolysis. Lasers Surg Med 9(4):389–397PubMedCrossRef Margolis RJ, Dover JS, Polla LL, Watanabe S, Shea CR, Hruza GJ et al (1989) Visible action spectrum for melanin-specific selective photothermolysis. Lasers Surg Med 9(4):389–397PubMedCrossRef
Metadata
Title
Utilizing 808 nm laser for sensitizing of melanoma tumors to megavoltage radiation therapy
Authors
Amirhosein Kefayat
Fatemeh Ghahremani
Navid Taheri
Alireza Amouheidari
Seyed Mehdi Okhravi
Publication date
01-02-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 1/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02796-3

Other articles of this Issue 1/2020

Lasers in Medical Science 1/2020 Go to the issue