Skip to main content
Top
Published in: Lasers in Medical Science 9/2019

01-12-2019 | Lung Cancer | Original Article

Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis

Authors: Kun Zhang, Chunyan Hao, Yanyan Huo, Baoyuan Man, Chao Zhang, Cheng Yang, Mei Liu, Chuansong Chen

Published in: Lasers in Medical Science | Issue 9/2019

Login to get access

Abstract

Despite the rapid development of medical science, the diagnosis of lung cancer is still quite challenging. Due to the ultrahigh detection sensitivity of surface-enhanced Raman spectroscopy (SERS), SERS has a broad application prospect in biomedicine, especially in the field of tumor blood detection. Although Raman spectroscopy can diagnose lung cancer through tissue slices, its weak cross sections are problematic. In this study, silver nanoparticles (AgNPs) were added to the surface of lung tissue slices to enhance the Raman scattering signals of biomolecules. The electromagnetic field distribution of AgNPs prepared was simulated using the COMSOL software. SERS obtained from the slices reflected the difference in biochemical molecules between normal (n = 23) and cancerous (n = 23) lung tissues. Principal component-linear discriminate analysis (PCA-LDA) was utilized to classify lung cancer and healthy lung tissues. The receiver operating characteristic curve gave the sensitivity (95.7%) and specificity (95.7%) of the PCA-LDA method. This study sheds new light on the general applicability of SERS analysis of tissue slices in clinical trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617CrossRef Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617CrossRef
2.
go back to reference Berrington de Gonzalez A, Berg CD, Visvanathan K et al (2009) Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers. J Natl Cancer I 101(3):205–209CrossRef Berrington de Gonzalez A, Berg CD, Visvanathan K et al (2009) Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers. J Natl Cancer I 101(3):205–209CrossRef
3.
go back to reference Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8CrossRef Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8CrossRef
4.
go back to reference Shao J, Tong L, Tang S et al (2015) PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Inter 7(9):5391–5399CrossRef Shao J, Tong L, Tang S et al (2015) PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Inter 7(9):5391–5399CrossRef
5.
go back to reference Li Z, Wang M, Jiao Y et al (2018) Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensor Actuat B Chem 255:374–383CrossRef Li Z, Wang M, Jiao Y et al (2018) Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensor Actuat B Chem 255:374–383CrossRef
6.
go back to reference Zhang C, Jiang S, Huo Y et al (2015) SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt Express 23(19):24811–24821CrossRef Zhang C, Jiang S, Huo Y et al (2015) SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt Express 23(19):24811–24821CrossRef
7.
go back to reference Huang X, El-Sayed IH, Qian W et al (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7(6):1591–1597CrossRef Huang X, El-Sayed IH, Qian W et al (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7(6):1591–1597CrossRef
8.
go back to reference Petersen D, Mavarani L, Niedieker D et al (2017) Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst 142(8):1207–1215CrossRef Petersen D, Mavarani L, Niedieker D et al (2017) Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst 142(8):1207–1215CrossRef
9.
go back to reference Zhou H, Yang D, Ivleva NP et al (2015) Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem 87(13):6553–6561CrossRef Zhou H, Yang D, Ivleva NP et al (2015) Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem 87(13):6553–6561CrossRef
10.
go back to reference Wang X, Qian X, Beitler JJ et al (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71(5):1526–1532CrossRef Wang X, Qian X, Beitler JJ et al (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71(5):1526–1532CrossRef
11.
go back to reference Dina N, Zhou H, Colniţă A et al (2017) Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst 142(10):1782–1789CrossRef Dina N, Zhou H, Colniţă A et al (2017) Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst 142(10):1782–1789CrossRef
12.
go back to reference Park J, Hwang M, Choi B et al (2017) Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal Chem 89(12):6695–6701CrossRef Park J, Hwang M, Choi B et al (2017) Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal Chem 89(12):6695–6701CrossRef
13.
go back to reference Li X, Yang T, Lin J (2012) Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt 17(3):0370031–0370035CrossRef Li X, Yang T, Lin J (2012) Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt 17(3):0370031–0370035CrossRef
14.
go back to reference Huang Z, McWilliams A, Lui H et al (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107(6):1047–1052CrossRef Huang Z, McWilliams A, Lui H et al (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107(6):1047–1052CrossRef
15.
go back to reference Oshima Y, Shinzawa H, Takenaka T et al (2010) Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. J Biomed Opt 15(1):017009CrossRef Oshima Y, Shinzawa H, Takenaka T et al (2010) Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. J Biomed Opt 15(1):017009CrossRef
16.
go back to reference Zheng XS, Jahn IJ, Weber K et al (2018) Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim Acta A 197:56–77CrossRef Zheng XS, Jahn IJ, Weber K et al (2018) Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim Acta A 197:56–77CrossRef
17.
go back to reference Zhang F, Braun GB, Shi Y et al (2010) Fabrication of Ag@ SiO2@ Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J Am Chem Soc 132(9):2850–2851CrossRef Zhang F, Braun GB, Shi Y et al (2010) Fabrication of Ag@ SiO2@ Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J Am Chem Soc 132(9):2850–2851CrossRef
18.
go back to reference Brozek-Pluska B, Kopec M, Surmacki J et al (2018) Histochemical analysis of human breast tissue samples by IR and Raman spectroscopies. Protocols discussion. Infrared Phys Technol 93:247–254CrossRef Brozek-Pluska B, Kopec M, Surmacki J et al (2018) Histochemical analysis of human breast tissue samples by IR and Raman spectroscopies. Protocols discussion. Infrared Phys Technol 93:247–254CrossRef
19.
go back to reference Zhao J, Lui H, McLean DI et al (2007) Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc 61(11):1225–1232CrossRef Zhao J, Lui H, McLean DI et al (2007) Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc 61(11):1225–1232CrossRef
20.
go back to reference Hanlon E, Manoharan R, Koo T et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R1CrossRef Hanlon E, Manoharan R, Koo T et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R1CrossRef
21.
go back to reference Shetty G, Kendall C, Shepherd N et al (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Brit J Cancer 94(10):1460–1464CrossRef Shetty G, Kendall C, Shepherd N et al (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Brit J Cancer 94(10):1460–1464CrossRef
22.
go back to reference Krafft C, Neudert L, Simat T et al (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A 61(7):1529–1535CrossRef Krafft C, Neudert L, Simat T et al (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A 61(7):1529–1535CrossRef
23.
go back to reference Ruiz-Chica A, Medina M, Sanchez-Jimenez F et al (2004) Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine. J Raman Spectrosc 35(2):93–100CrossRef Ruiz-Chica A, Medina M, Sanchez-Jimenez F et al (2004) Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine. J Raman Spectrosc 35(2):93–100CrossRef
24.
go back to reference Chan JW, Taylor DS, Zwerdling T et al (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90(2):648–656CrossRef Chan JW, Taylor DS, Zwerdling T et al (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90(2):648–656CrossRef
25.
go back to reference Stone N, Kendall C, Smith J et al (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157CrossRef Stone N, Kendall C, Smith J et al (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157CrossRef
26.
go back to reference Kaminaka S, Yamazaki H, Ito T et al (2001) Near-infrared Raman spectroscopy of human lung tissues: possibility of molecular-level cancer diagnosis. J Raman Spectrosc 32(2):139–141CrossRef Kaminaka S, Yamazaki H, Ito T et al (2001) Near-infrared Raman spectroscopy of human lung tissues: possibility of molecular-level cancer diagnosis. J Raman Spectrosc 32(2):139–141CrossRef
27.
go back to reference Wu H, Xue R, Lu C et al (2009) Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B 877(27):3111–3117CrossRef Wu H, Xue R, Lu C et al (2009) Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B 877(27):3111–3117CrossRef
28.
go back to reference Banki F, Yacoub WN, Hagen JA et al (2008) Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer. J Am Coll Surg 207(1):30–35CrossRef Banki F, Yacoub WN, Hagen JA et al (2008) Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer. J Am Coll Surg 207(1):30–35CrossRef
29.
go back to reference Bergholt MS, Zheng W, Ho KY et al (2013) Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J Biophotonics 6(1):49–59CrossRef Bergholt MS, Zheng W, Ho KY et al (2013) Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J Biophotonics 6(1):49–59CrossRef
30.
go back to reference Chowdary M, Kumar KK, Thakur K et al (2007) Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy. Photomed Laser Surg 25(4):269–274CrossRef Chowdary M, Kumar KK, Thakur K et al (2007) Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy. Photomed Laser Surg 25(4):269–274CrossRef
Metadata
Title
Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis
Authors
Kun Zhang
Chunyan Hao
Yanyan Huo
Baoyuan Man
Chao Zhang
Cheng Yang
Mei Liu
Chuansong Chen
Publication date
01-12-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 9/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02781-w

Other articles of this Issue 9/2019

Lasers in Medical Science 9/2019 Go to the issue