Skip to main content
Top
Published in: Lasers in Medical Science 1/2019

01-02-2019 | Original Article

Effects of Nd:YAG low-level laser irradiation on cultured human osteoblasts migration and ATP production: in vitro study

Authors: Yuji Tsuka, Ryo Kunimatsu, Hidemi Gunji, Kengo Nakajima, Aya Kimura, Tomoka Hiraki, Ayaka Nakatani, Kotaro Tanimoto

Published in: Lasers in Medical Science | Issue 1/2019

Login to get access

Abstract

Low-level laser therapy has become one of the fastest growing fields of medicine in recent years. Many in vivo and in vitro studies have shown that laser irradiation activates a range of cellular processes in a variety of cell types and can promote tissue repair. However, few in vitro experiments have evaluated the effects of laser irradiation on cells in real time. The purpose of this study was to examine the effects of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the migration of cultured human osteoblasts. A dedicated 96-well plate was used, and confluent cultures of the human osteoblast-like cell line, Saos-2, were injured with a wound maker. The wounded cells were then exposed to the Nd:YAG laser (wavelength of 1064 nm) for 60 s at 0.3 W (10 pps, 30 mJ). The total energy density was about 10.34 J/cm2. Images of the wounds were automatically acquired inside the CO2 incubator by the IncuCyte ZOOM™ software. In addition, after laser irradiation, the production of adenosine triphosphate (ATP) was measured using the CellTiter-Glo™ Luminescent Cell Viability Assay. Migration of cells from the border of the original scratch zone was accelerated by laser irradiation. In addition, compared with the control group, significant enhancement of ATP production was observed in the irradiated group. The present study showed that Nd:YAG laser irradiation (wavelength of 1064 nm, 0.3 W, 10 pps, 30 mJ, 10.34 J/cm2, irradiation time 60 s) may contribute to the regeneration of bone tissues owing to enhanced osteoblast cell migration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 31(4):163–168CrossRefPubMedPubMedCentral Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 31(4):163–168CrossRefPubMedPubMedCentral
2.
go back to reference Armengol V, Jean A, Rohanizadeh R, Hamel H (1999) Scanning electron microscopic analysis of diseased and healthy dental hard tissues after Er:YAG laser irradiation: in vitro study. J Endod 25(8):543–546CrossRefPubMed Armengol V, Jean A, Rohanizadeh R, Hamel H (1999) Scanning electron microscopic analysis of diseased and healthy dental hard tissues after Er:YAG laser irradiation: in vitro study. J Endod 25(8):543–546CrossRefPubMed
3.
go back to reference Alzoman HA, Diab HM (2016) Effect of gallium aluminium arsenide diode laser therapy on Porphyromonas gingivalis in chronic periodontitis: a randomized controlled trial. Int J Dent Hyg 14(4):261–266CrossRefPubMed Alzoman HA, Diab HM (2016) Effect of gallium aluminium arsenide diode laser therapy on Porphyromonas gingivalis in chronic periodontitis: a randomized controlled trial. Int J Dent Hyg 14(4):261–266CrossRefPubMed
4.
go back to reference Gündoğar H, Şenyurt SZ, Erciyas K, Yalım M, Üstün K (2016) The effect of low-level laser therapy on non-surgical periodontal treatment: a randomized controlled, single-blind, split-mouth clinical trial. Lasers Med Sci 31(9):1767–1773CrossRefPubMed Gündoğar H, Şenyurt SZ, Erciyas K, Yalım M, Üstün K (2016) The effect of low-level laser therapy on non-surgical periodontal treatment: a randomized controlled, single-blind, split-mouth clinical trial. Lasers Med Sci 31(9):1767–1773CrossRefPubMed
5.
go back to reference García-Delaney C, Abad-Sánchez D, Arnabat-Domínguez J, Valmaseda-Castellón E, Gay-Escoda C (2017) Evaluation of the effectiveness of the photobiomodulation in the treatment of dentin hypersensitivity after basic therapy: a randomized clinical trial. J Clin Exp Dent 9(5):694–702 García-Delaney C, Abad-Sánchez D, Arnabat-Domínguez J, Valmaseda-Castellón E, Gay-Escoda C (2017) Evaluation of the effectiveness of the photobiomodulation in the treatment of dentin hypersensitivity after basic therapy: a randomized clinical trial. J Clin Exp Dent 9(5):694–702
6.
go back to reference Femiano F, Femiano R, Lanza A, Lanza M, Perillo L (2017) Effectiveness on oral pain of 808-nm diode laser used prior to composite restoration for symptomatic non-carious cervical lesions unresponsive to desensitizing agents. Lasers Med Sci 32(1):67–71CrossRefPubMed Femiano F, Femiano R, Lanza A, Lanza M, Perillo L (2017) Effectiveness on oral pain of 808-nm diode laser used prior to composite restoration for symptomatic non-carious cervical lesions unresponsive to desensitizing agents. Lasers Med Sci 32(1):67–71CrossRefPubMed
7.
go back to reference Sayed N, Murugavel C, Gnanam A (2014) Management of temporomandibular disorders with low level laser therapy. J Maxillofac Oral Surg 13(4):444–450CrossRefPubMed Sayed N, Murugavel C, Gnanam A (2014) Management of temporomandibular disorders with low level laser therapy. J Maxillofac Oral Surg 13(4):444–450CrossRefPubMed
8.
go back to reference Wagner VP, Curra M, Webber LP, Nör C, Matte U et al (2016) Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci 31(4):665–671CrossRefPubMed Wagner VP, Curra M, Webber LP, Nör C, Matte U et al (2016) Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci 31(4):665–671CrossRefPubMed
9.
go back to reference Suzuki R, Takakuda K (2016) Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci 31(8):1683–1689CrossRefPubMed Suzuki R, Takakuda K (2016) Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci 31(8):1683–1689CrossRefPubMed
10.
go back to reference Soares DM, Ginani F, Henriques ÁG, Barboza CA (2015) Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30(3):1171–1174CrossRefPubMed Soares DM, Ginani F, Henriques ÁG, Barboza CA (2015) Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30(3):1171–1174CrossRefPubMed
11.
go back to reference Wu JY, Wang YH, Wang GJ, Ho ML, Wang CZ et al (2012) Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PLoS One 7(9):e44027CrossRefPubMedPubMedCentral Wu JY, Wang YH, Wang GJ, Ho ML, Wang CZ et al (2012) Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PLoS One 7(9):e44027CrossRefPubMedPubMedCentral
12.
go back to reference Fabre HS, Navarro RL, Oltramari-Navarro PV, Oliveira RF, Pires-Oliveira DA et al (2015) Anti-inflammatory and analgesic effects of low-level laser therapy on the postoperative healing process. J Phys Ther Sci 27(6):1645–1648CrossRefPubMedPubMedCentral Fabre HS, Navarro RL, Oltramari-Navarro PV, Oliveira RF, Pires-Oliveira DA et al (2015) Anti-inflammatory and analgesic effects of low-level laser therapy on the postoperative healing process. J Phys Ther Sci 27(6):1645–1648CrossRefPubMedPubMedCentral
13.
go back to reference Aoki A, Sasaki KM, Watanabe H, Ishikawa I (2004) Lasers in nonsurgical periodontal therapy. Periodontol 2000(6):59–97CrossRef Aoki A, Sasaki KM, Watanabe H, Ishikawa I (2004) Lasers in nonsurgical periodontal therapy. Periodontol 2000(6):59–97CrossRef
14.
15.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS et al (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057CrossRefPubMed Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS et al (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057CrossRefPubMed
16.
go back to reference Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L et al (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859CrossRefPubMedPubMedCentral Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L et al (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859CrossRefPubMedPubMedCentral
17.
go back to reference Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 2. Hard tissue applications. Aust Dent J 42(5):302–306CrossRefPubMed Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 2. Hard tissue applications. Aust Dent J 42(5):302–306CrossRefPubMed
18.
go back to reference Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefPubMed Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223CrossRefPubMed
19.
go back to reference Houreld NN, Masha RT, Abrahamse H (2012) Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med 44(5):429–434CrossRefPubMed Houreld NN, Masha RT, Abrahamse H (2012) Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med 44(5):429–434CrossRefPubMed
20.
go back to reference Zungu IL, Hawkins Evans D, Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—an in vitro study. Photochem Photobiol 85(4):987–996CrossRefPubMed Zungu IL, Hawkins Evans D, Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—an in vitro study. Photochem Photobiol 85(4):987–996CrossRefPubMed
21.
go back to reference Abduljabbar T, Javed F, Kellesarian SV, Vohra F, Romanos GE (2017) Effect of Nd:YAG laser-assisted non-surgical mechanical debridement on clinical and radiographic peri-implant inflammatory parameters in patients with peri-implant disease. J Photochem Photobiol B Mar 168:16–19CrossRef Abduljabbar T, Javed F, Kellesarian SV, Vohra F, Romanos GE (2017) Effect of Nd:YAG laser-assisted non-surgical mechanical debridement on clinical and radiographic peri-implant inflammatory parameters in patients with peri-implant disease. J Photochem Photobiol B Mar 168:16–19CrossRef
22.
go back to reference Benedicenti S, Pepe IM, Angiero F, Benedicenti A (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453CrossRefPubMed Benedicenti S, Pepe IM, Angiero F, Benedicenti A (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453CrossRefPubMed
23.
go back to reference Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML et al (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One 8(1):e54067CrossRefPubMedPubMedCentral Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML et al (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One 8(1):e54067CrossRefPubMedPubMedCentral
24.
go back to reference Son J, Kim YB, Ge Z, Choi SH, Kim G (2012) Bone healing effects of diode laser (808 nm) on a rat tibial fracture model. In Vivo 26(4):703–709PubMed Son J, Kim YB, Ge Z, Choi SH, Kim G (2012) Bone healing effects of diode laser (808 nm) on a rat tibial fracture model. In Vivo 26(4):703–709PubMed
25.
go back to reference Gunji H, Kunimatsu R, Tsuka Y, Yoshimi Y, Sumi K, et al. (2018) Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats. Laser Sur Med : inpress Gunji H, Kunimatsu R, Tsuka Y, Yoshimi Y, Sumi K, et al. (2018) Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats. Laser Sur Med : inpress
26.
go back to reference Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y (2014) High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 29(4):1339–1347CrossRefPubMed Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y (2014) High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 29(4):1339–1347CrossRefPubMed
27.
go back to reference Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, et al. (2018) Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci : inpress Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, et al. (2018) Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci : inpress
28.
go back to reference Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M et al (2003) High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab 21(2):67–73CrossRefPubMed Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M et al (2003) High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab 21(2):67–73CrossRefPubMed
29.
go back to reference Tsuka Y, Fujita T, Shirakura M, Kunimatsu R, Su SC et al (2016) Effects of neodymium-doped yttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Lasers Med Sci 7(1):40–44CrossRefPubMedPubMedCentral Tsuka Y, Fujita T, Shirakura M, Kunimatsu R, Su SC et al (2016) Effects of neodymium-doped yttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Lasers Med Sci 7(1):40–44CrossRefPubMedPubMedCentral
30.
go back to reference Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K et al (2013) ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495(7439):103–106CrossRefPubMed Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K et al (2013) ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495(7439):103–106CrossRefPubMed
31.
go back to reference Li J, Hou B, Tumova S, Muraki K, Bruns A et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 13 515(7526):279–282CrossRef Li J, Hou B, Tumova S, Muraki K, Bruns A et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 13 515(7526):279–282CrossRef
32.
go back to reference Sinha C, Arora K, Naren AP (2016) Methods to study Mrp4-containing macromolecular complexes in the regulation of fibroblast migration. J Vis Exp 19(111) Sinha C, Arora K, Naren AP (2016) Methods to study Mrp4-containing macromolecular complexes in the regulation of fibroblast migration. J Vis Exp 19(111)
33.
go back to reference Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S et al (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539CrossRefPubMed Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Zecchi-Orlandini S et al (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539CrossRefPubMed
34.
go back to reference Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42:51CrossRef Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42:51CrossRef
35.
go back to reference Tuner J (2010) The new laser Handbook. Preima books, Sweden. 528–565 Tuner J (2010) The new laser Handbook. Preima books, Sweden. 528–565
36.
go back to reference Michael R Hamblin (2017) Handbook of low-level laser therapy, 8 Pan Stanford publishing Pte ltd Singapore 311–312 Michael R Hamblin (2017) Handbook of low-level laser therapy, 8 Pan Stanford publishing Pte ltd Singapore 311–312
37.
go back to reference Gkogkos AS, Karoussis IK, Prevezanos ID, Marcopoulou KE, Kyriakidou K et al (2015) Effect of Nd:YAG low level laser therapy on human gingival fibroblasts. Int J Dent 25:8941 Gkogkos AS, Karoussis IK, Prevezanos ID, Marcopoulou KE, Kyriakidou K et al (2015) Effect of Nd:YAG low level laser therapy on human gingival fibroblasts. Int J Dent 25:8941
38.
go back to reference Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed 24:199–210CrossRefPubMed Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed 24:199–210CrossRefPubMed
Metadata
Title
Effects of Nd:YAG low-level laser irradiation on cultured human osteoblasts migration and ATP production: in vitro study
Authors
Yuji Tsuka
Ryo Kunimatsu
Hidemi Gunji
Kengo Nakajima
Aya Kimura
Tomoka Hiraki
Ayaka Nakatani
Kotaro Tanimoto
Publication date
01-02-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 1/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2586-6

Other articles of this Issue 1/2019

Lasers in Medical Science 1/2019 Go to the issue