Skip to main content
Top
Published in: Lasers in Medical Science 1/2014

01-01-2014 | Original Article

Laser and light-emitting diode effects on pre-osteoblast growth and differentiation

Authors: Marina Tochetti Pagin, Flávia Amadeu de Oliveira, Rodrigo Cardoso Oliveira, Adriana Campos Passanezi Sant’Ana, Maria Lucia Rubo de Rezende, Sebastião Luiz Aguiar Greghi, Carla Andreotti Damante

Published in: Lasers in Medical Science | Issue 1/2014

Login to get access

Abstract

The acceleration of bone regeneration by low-intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. The purpose of this study is to compare the effects of light-emitting diode (LED) and laser on pre-osteoblast MC3T3 proliferation and differentiation. Cells were irradiated with red, infrared, and LED (3 and 5 J/cm2). Lasers had a power density of 1 W/cm2 and irradiation time of 2 and 5 s. LED had a power density of 60 mW/cm2 and irradiation time of 50 and 83 s. Control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, and 96 h), and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72 and 96 h and 7 and 14 days). At 24 h, the cell growth was enhanced 3.6 times by LED (5 J/cm2), 6.8 times by red laser (3 J/cm2), and 10.1 times by red laser (5 J/cm2) in relation to control group (p < 0.05). At the other periods, there was no influence of irradiation on cell growth (p > 0.05). The production of ALP was not influenced by irradiation at any period of time (p > 0.05). Low-intensity laser and LED have similar effects on stimulation of cell growth, but no effect on cell differentiation.
Literature
1.
go back to reference Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336PubMedCrossRef Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336PubMedCrossRef
2.
go back to reference Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891PubMedCrossRef Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891PubMedCrossRef
3.
go back to reference Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265PubMedCrossRef Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265PubMedCrossRef
4.
go back to reference Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437PubMedCrossRef Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27:427–437PubMedCrossRef
5.
go back to reference Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E (2004) Clinical evaluation of the effects of low intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J Appl Oral Sci 12(2):133–136PubMedCrossRef Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E (2004) Clinical evaluation of the effects of low intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J Appl Oral Sci 12(2):133–136PubMedCrossRef
6.
go back to reference Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35:377–384PubMedCrossRef Damante CA, Greghi SLA, Sant’Ana ACP, Passanezi E, Taga R (2004) Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg Med 35:377–384PubMedCrossRef
7.
go back to reference Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526PubMedCrossRef Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, Shimizu N (2010) Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med 42:519–526PubMedCrossRef
8.
go back to reference Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef
9.
go back to reference Haxsen V, Schikora D, Sommer U, Remppis A, Greten J, Kasperk C (2008) Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med Sci 23(4):381–384PubMedCrossRef Haxsen V, Schikora D, Sommer U, Remppis A, Greten J, Kasperk C (2008) Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med Sci 23(4):381–384PubMedCrossRef
10.
go back to reference Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340PubMedCrossRef Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340PubMedCrossRef
11.
go back to reference Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and lower power laser irradiation. Lasers Med Sci 18:95–99PubMedCrossRef Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and lower power laser irradiation. Lasers Med Sci 18:95–99PubMedCrossRef
12.
go back to reference Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP, Ferreira CV (2008) Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem 22(5–6):497–506PubMedCrossRef Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP, Ferreira CV (2008) Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem 22(5–6):497–506PubMedCrossRef
13.
go back to reference Sabino LG, de Negreiros LMV, Vollet-filho JD, Ferreira J, Tirapelli DPC, Novais PC, Tirapelli LF, Kurachi C, Bagnato VS (2011) Experimental evidence and model explanation for cell population characteristics modification when applying sequential photodynamic therapy. Las Phys Lett 8(3):239–246CrossRef Sabino LG, de Negreiros LMV, Vollet-filho JD, Ferreira J, Tirapelli DPC, Novais PC, Tirapelli LF, Kurachi C, Bagnato VS (2011) Experimental evidence and model explanation for cell population characteristics modification when applying sequential photodynamic therapy. Las Phys Lett 8(3):239–246CrossRef
14.
go back to reference Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254PubMedCrossRef Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254PubMedCrossRef
15.
go back to reference Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef
16.
go back to reference Azevedo LH, Eduardo FP, Moreira MS, Eduardo CP, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. A pilot study. Lasers Med Sci 21:86–89PubMedCrossRef Azevedo LH, Eduardo FP, Moreira MS, Eduardo CP, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. A pilot study. Lasers Med Sci 21:86–89PubMedCrossRef
17.
go back to reference Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(1):157–165CrossRef Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(1):157–165CrossRef
18.
go back to reference Souza APC, Santos JN, Reis J Jr, Ramos TA, Souza J, Cangussu MCT, Pinheiro ALB (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28(4):547–552PubMedCrossRef Souza APC, Santos JN, Reis J Jr, Ramos TA, Souza J, Cangussu MCT, Pinheiro ALB (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28(4):547–552PubMedCrossRef
19.
go back to reference McDaniel, Weiss RA, Geronemus MD, Mazur BS, Wilson MS, Weiss MA (2010) Varying ratios of wavelengths in dual wavelength led photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med 42:540–545PubMedCrossRef McDaniel, Weiss RA, Geronemus MD, Mazur BS, Wilson MS, Weiss MA (2010) Varying ratios of wavelengths in dual wavelength led photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med 42:540–545PubMedCrossRef
20.
go back to reference Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314PubMedCrossRef Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314PubMedCrossRef
21.
go back to reference Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166PubMedCrossRef Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166PubMedCrossRef
22.
go back to reference Cankaya AB, Erdem MA, Erdem AP, Erguven M, Aybar B, Kasapoglu C, Bilir A (2011) Evaluation of light-emitting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. Int J Med Sci 8(7):584–593PubMedCentralPubMedCrossRef Cankaya AB, Erdem MA, Erdem AP, Erguven M, Aybar B, Kasapoglu C, Bilir A (2011) Evaluation of light-emitting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. Int J Med Sci 8(7):584–593PubMedCentralPubMedCrossRef
23.
go back to reference Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222PubMedCrossRef Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222PubMedCrossRef
24.
go back to reference Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24(6):909–916PubMedCrossRef Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24(6):909–916PubMedCrossRef
25.
go back to reference Quarles LD, Yohay LD, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692PubMedCrossRef Quarles LD, Yohay LD, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692PubMedCrossRef
26.
go back to reference Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef
27.
go back to reference Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111(6):1445–1452PubMedCrossRef Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111(6):1445–1452PubMedCrossRef
28.
go back to reference Peng F, Wu H, Zheng Y, Xu X, Yu J (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653PubMedCrossRef Peng F, Wu H, Zheng Y, Xu X, Yu J (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653PubMedCrossRef
29.
go back to reference Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef
Metadata
Title
Laser and light-emitting diode effects on pre-osteoblast growth and differentiation
Authors
Marina Tochetti Pagin
Flávia Amadeu de Oliveira
Rodrigo Cardoso Oliveira
Adriana Campos Passanezi Sant’Ana
Maria Lucia Rubo de Rezende
Sebastião Luiz Aguiar Greghi
Carla Andreotti Damante
Publication date
01-01-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 1/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1238-5

Other articles of this Issue 1/2014

Lasers in Medical Science 1/2014 Go to the issue