Skip to main content
Top
Published in: Lasers in Medical Science 3/2017

01-04-2017 | Original Article

A novel combination treatment to stimulate bone healing and regeneration under hypoxic conditions: photobiomodulation and melatonin

Authors: Jang-Ho Son, Bong-Soo Park, In-Ryoung Kim, Iel-Yong Sung, Yeong-Cheol Cho, Jung-Soo Kim, Yong-Deok Kim

Published in: Lasers in Medical Science | Issue 3/2017

Login to get access

Abstract

Melatonin has anabolic effects on the bone, even under hypoxia, and laser irradiation has been shown to improve osteoblastic differentiation. The aim of this study was to investigate whether laser irradiation and melatonin would have synergistic effects on osteoblastic differentiation and mineralization under hypoxic conditions. MC3T3-E1 cells were exposed to 1% oxygen tension for the hypoxia condition. The cells were divided into four groups: G1-osteoblast differentiation medium only (as the hypoxic condition), G2-treatment with 50 μM melatonin only, G3-laser irradiation (808 nm, 80 mW, GaAlAs diode) only, and G4-treatment with 50 μM melatonin and laser irradiation (808 nm, 80 mW, GaAlAs diode). Immunoblotting showed that osterix expression was markedly increased in the melatonin-treated and laser-irradiated cells at 48 and 72 h. In addition, alkaline phosphatase activity significantly increased and continued to rise throughout the experiment. Alizarin Red staining showed markedly increased mineralized nodules as compared with only melatonin-treated or laser-irradiated cells at day 7, which significantly increased by day 14. Moreover, when melatonin-treated cells were laser-irradiated, the differentiation and mineralization of cells were found to involve p38 MAPK and PRKD1 signaling mechanisms. However, the enhanced effects of laser irradiation with melatonin were markedly inhibited when the cells were treated with luzindole, a selective melatonin receptor antagonist. Therefore, we concluded that laser irradiation could promote the effect of melatonin on the differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions, and that this process is mediated through melatonin 1/2 receptors and PKRD/p38 signaling pathways.
Literature
1.
go back to reference Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebesteny T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43CrossRefPubMed Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebesteny T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43CrossRefPubMed
2.
go back to reference Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047CrossRefPubMed Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047CrossRefPubMed
3.
go back to reference Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L (2013) Melatonin and the skeleton. Osteoporos Int 24:2919–2927CrossRefPubMed Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L (2013) Melatonin and the skeleton. Osteoporos Int 24:2919–2927CrossRefPubMed
4.
go back to reference Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40:332–342CrossRefPubMed Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40:332–342CrossRefPubMed
5.
go back to reference Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108CrossRefPubMed Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108CrossRefPubMed
6.
go back to reference Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15:246–250PubMed Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15:246–250PubMed
7.
go back to reference Lopez A, Garcia JA, Escames G, Venegas C, Ortiz F, Lopez LC, Acuna-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198CrossRefPubMed Lopez A, Garcia JA, Escames G, Venegas C, Ortiz F, Lopez LC, Acuna-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198CrossRefPubMed
8.
go back to reference Yilmaz S, Yilmaz E (2006) Effects of melatonin and vitamin E on oxidative-antioxidative status in rats exposed to irradiation. Toxicology 222:1–7CrossRefPubMed Yilmaz S, Yilmaz E (2006) Effects of melatonin and vitamin E on oxidative-antioxidative status in rats exposed to irradiation. Toxicology 222:1–7CrossRefPubMed
9.
go back to reference Son JH, Cho YC, Sung IY, Kim IR, Park BS, Kim YD (2014) Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 57:385–392CrossRefPubMed Son JH, Cho YC, Sung IY, Kim IR, Park BS, Kim YD (2014) Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 57:385–392CrossRefPubMed
10.
go back to reference Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med 23:835–842CrossRefPubMed Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med 23:835–842CrossRefPubMed
11.
go back to reference Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2015) Low reactive level laser therapy for mesenchymal stromal cells therapies. Stem Cells Int 2015:974864CrossRefPubMedPubMedCentral Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2015) Low reactive level laser therapy for mesenchymal stromal cells therapies. Stem Cells Int 2015:974864CrossRefPubMedPubMedCentral
12.
go back to reference Silva Junior AN, Pinheiro AL, Oliveira MG, Weismann R, Ramalho LM, Nicolau RA (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–87CrossRefPubMed Silva Junior AN, Pinheiro AL, Oliveira MG, Weismann R, Ramalho LM, Nicolau RA (2002) Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–87CrossRefPubMed
13.
go back to reference Shimizu N, Mayahara K, Kiyosaki T, Yamaguchi A, Ozawa Y, Abiko Y (2007) Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med 39:551–559CrossRefPubMed Shimizu N, Mayahara K, Kiyosaki T, Yamaguchi A, Ozawa Y, Abiko Y (2007) Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med 39:551–559CrossRefPubMed
14.
go back to reference AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRefPubMed AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRefPubMed
15.
go back to reference Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 3:211–216CrossRefPubMed Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 3:211–216CrossRefPubMed
16.
go back to reference Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tozum TF (2012) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30:149–154CrossRefPubMed Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tozum TF (2012) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30:149–154CrossRefPubMed
17.
go back to reference Nissan J, Assif D, Gross MD, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–924CrossRefPubMed Nissan J, Assif D, Gross MD, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–924CrossRefPubMed
18.
go back to reference Cury V, Moretti AI, Assis L, Bossini P, Crusca Jde S, Neto CB, Fangel R, de Souza HP, Hamblin MR, Parizotto NA (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1alpha and MMP-2. J Photochem Photobiol B 125:164–170CrossRefPubMedPubMedCentral Cury V, Moretti AI, Assis L, Bossini P, Crusca Jde S, Neto CB, Fangel R, de Souza HP, Hamblin MR, Parizotto NA (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1alpha and MMP-2. J Photochem Photobiol B 125:164–170CrossRefPubMedPubMedCentral
19.
go back to reference Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509CrossRefPubMed Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509CrossRefPubMed
20.
go back to reference Theodoro LH, Sampaio JE, Haypek P, Bachmann L, Zezell DM, Garcia VG (2006) Effect of Er:YAG and diode lasers on the adhesion of blood components and on the morphology of irradiated root surfaces. J Periodontal Res 41:381–390CrossRefPubMed Theodoro LH, Sampaio JE, Haypek P, Bachmann L, Zezell DM, Garcia VG (2006) Effect of Er:YAG and diode lasers on the adhesion of blood components and on the morphology of irradiated root surfaces. J Periodontal Res 41:381–390CrossRefPubMed
21.
go back to reference Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26CrossRefPubMed Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26CrossRefPubMed
22.
go back to reference Zhang LF, Qi J, Zuo G, Jia P, Shen X, Shao J, Kang H, Yang H, Deng L (2014) Osteoblast-secreted factors promote proliferation and osteogenic differentiation of bone marrow stromal cells via VEGF/heme-oxygenase-1 pathway. PLoS One 9, e99946CrossRefPubMedPubMedCentral Zhang LF, Qi J, Zuo G, Jia P, Shen X, Shao J, Kang H, Yang H, Deng L (2014) Osteoblast-secreted factors promote proliferation and osteogenic differentiation of bone marrow stromal cells via VEGF/heme-oxygenase-1 pathway. PLoS One 9, e99946CrossRefPubMedPubMedCentral
23.
go back to reference Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106CrossRef Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106CrossRef
24.
go back to reference Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology. Academic Press/Elsevier, San Diego Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology. Academic Press/Elsevier, San Diego
25.
go back to reference Kimira Y, Ogura K, Taniuchi Y, Kataoka A, Inoue N, Sugihara F, Nakatani S, Shimizu J, Wada M, Mano H (2014) Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 453:498–501CrossRefPubMed Kimira Y, Ogura K, Taniuchi Y, Kataoka A, Inoue N, Sugihara F, Nakatani S, Shimizu J, Wada M, Mano H (2014) Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 453:498–501CrossRefPubMed
26.
go back to reference Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29CrossRefPubMed Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29CrossRefPubMed
27.
go back to reference Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70CrossRefPubMed Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70CrossRefPubMed
28.
go back to reference Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMed Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMed
29.
30.
go back to reference Lemonnier J, Ghayor C, Guicheux J, Caverzasio J (2004) Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogen-activated protein kinases JNK and p38 and osteoblastic cell differentiation. J Biol Chem 279:259–264CrossRefPubMed Lemonnier J, Ghayor C, Guicheux J, Caverzasio J (2004) Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogen-activated protein kinases JNK and p38 and osteoblastic cell differentiation. J Biol Chem 279:259–264CrossRefPubMed
31.
go back to reference Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359CrossRefPubMed Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359CrossRefPubMed
32.
go back to reference Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25:559–569CrossRefPubMed Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I, Izumi Y (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25:559–569CrossRefPubMed
33.
go back to reference Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J 39:238–244CrossRefPubMed Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J 39:238–244CrossRefPubMed
34.
go back to reference Komarova SV, Ataullakhanov FI, Globus RK (2000) Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol 279:C1220–1229PubMed Komarova SV, Ataullakhanov FI, Globus RK (2000) Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol 279:C1220–1229PubMed
35.
go back to reference Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26:401–404CrossRefPubMed Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26:401–404CrossRefPubMed
36.
go back to reference Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22:111–117CrossRefPubMed Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22:111–117CrossRefPubMed
37.
go back to reference Kujawa J, Pasternak K, Zavodnik I, Irzmanski R, Wrobel D, Bryszewska M (2014) The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers Med Sci 29:1663–1668CrossRefPubMed Kujawa J, Pasternak K, Zavodnik I, Irzmanski R, Wrobel D, Bryszewska M (2014) The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers Med Sci 29:1663–1668CrossRefPubMed
38.
go back to reference Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381CrossRefPubMed Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381CrossRefPubMed
39.
go back to reference Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML (2016) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361–383CrossRefPubMed Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML (2016) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361–383CrossRefPubMed
40.
go back to reference Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39:95–99CrossRefPubMed Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39:95–99CrossRefPubMed
42.
go back to reference Migliario M, Pittarella P, Fanuli M, Rizzi M, Reno F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed Migliario M, Pittarella P, Fanuli M, Rizzi M, Reno F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed
43.
go back to reference Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–611CrossRefPubMed Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–611CrossRefPubMed
44.
Metadata
Title
A novel combination treatment to stimulate bone healing and regeneration under hypoxic conditions: photobiomodulation and melatonin
Authors
Jang-Ho Son
Bong-Soo Park
In-Ryoung Kim
Iel-Yong Sung
Yeong-Cheol Cho
Jung-Soo Kim
Yong-Deok Kim
Publication date
01-04-2017
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2017
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2145-6

Other articles of this Issue 3/2017

Lasers in Medical Science 3/2017 Go to the issue