Skip to main content
Top
Published in: Lasers in Medical Science 7/2016

Open Access 01-09-2016 | Original Article

Effect of the transdermal low-level laser therapy on endothelial function

Authors: Alicja Szymczyszyn, Adrian Doroszko, Ewa Szahidewicz-Krupska, Piotr Rola, Radosław Gutherc, Jakub Jasiczek, Grzegorz Mazur, Arkadiusz Derkacz

Published in: Lasers in Medical Science | Issue 7/2016

Login to get access

Abstract

The effect of low-level laser therapy (LLLT) on the cardiovascular system is not fully established. Since the endothelium is an important endocrine element, establishing the mechanisms of LLLT action is an important issue.The aim of the study was to evaluate the effect of transdermal LLLT on endothelial function.In this study, healthy volunteers (n = 40, age = 20–40 years) were enrolled. N = 30 (14 female, 16 male, mean age 30 ± 5 years) constituted the laser-irradiated group (LG). The remaining 10 subjects (6 women, 4 men, mean age 28 ± 5 years) constituted the control group (CG). Participants were subjected to LLLT once a day for three consecutive days. Blood for biochemical assessments was drawn before the first irradiation and 24 h after the last session. In the LG, transdermal illumination of radial artery was conducted (a semiconductor laser λ = 808 nm, irradiation 50 mW, energy density 1.6 W/cm2 and a dose 20 J/day, a total dose of 60 J). Biochemical parameters (reflecting angiogenesis: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiostatin; antioxidative status: glutathione (GSH) and the nitric oxide metabolic pathway: symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA) and l-arginine) were assessed. In the LG, a significant increase in GSH levels and considerable decrease in angiostatin concentration following the LLLT were observed. No significant differences in levels of the VEGF, FGF, SDMA, ADMA were observed.LLLT modifies vascular endothelial function by increasing its antioxidant and angiogenic potential. We found no significant differences in levels of the nitric oxide pathway metabolites within 24 h following the LLLT irradiation.
Literature
1.
go back to reference Hadi H, Carr CS, Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors therapy and outcome. Vasc Health Risc Manag 1(3):183–198 Hadi H, Carr CS, Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors therapy and outcome. Vasc Health Risc Manag 1(3):183–198
2.
go back to reference Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280(4):C719–741PubMed Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280(4):C719–741PubMed
3.
go back to reference Doroszko A, Andrzejak R, Szuba A (2011) Role of the nitric oxide metabolic pathway and prostanoids in the pathogenesis of endothelial dysfunction and essential hypertension in young men. Hypertens Res 34(1):79–86CrossRefPubMed Doroszko A, Andrzejak R, Szuba A (2011) Role of the nitric oxide metabolic pathway and prostanoids in the pathogenesis of endothelial dysfunction and essential hypertension in young men. Hypertens Res 34(1):79–86CrossRefPubMed
4.
go back to reference Passarella S (1989) He-Ne laser irradiation of isolated mitochondria. J Photochem 3(4):642–643 Passarella S (1989) He-Ne laser irradiation of isolated mitochondria. J Photochem 3(4):642–643
5.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057CrossRefPubMed Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057CrossRefPubMed
6.
go back to reference Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression. Lasers Surg Med 40(1):46–54CrossRefPubMed Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression. Lasers Surg Med 40(1):46–54CrossRefPubMed
7.
go back to reference Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38(7):682–688CrossRefPubMed Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38(7):682–688CrossRefPubMed
8.
go back to reference Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, assymetric dimethylarginine and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Analitycal Biochemistry 303(2):131–137CrossRef Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, assymetric dimethylarginine and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Analitycal Biochemistry 303(2):131–137CrossRef
9.
go back to reference Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300CrossRefPubMed Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300CrossRefPubMed
10.
go back to reference Firat ET, Dağ A, Günay A, Kaya B, Karadede Mİ, Kanay BE, Ketani A, Evliyaoğlu O, Uysal E (2013) The effects of low-level laser therapy on palatal mucoperiosteal wound healing and oxidative stress status in experimental diabetic rats. Photomed Laser Surg 31(7):315–321CrossRefPubMed Firat ET, Dağ A, Günay A, Kaya B, Karadede Mİ, Kanay BE, Ketani A, Evliyaoğlu O, Uysal E (2013) The effects of low-level laser therapy on palatal mucoperiosteal wound healing and oxidative stress status in experimental diabetic rats. Photomed Laser Surg 31(7):315–321CrossRefPubMed
11.
go back to reference Silveira PC, Silva LA, Freitas TP, Latini A, Pinho RA (2011) Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci 26(1):125–131CrossRefPubMed Silveira PC, Silva LA, Freitas TP, Latini A, Pinho RA (2011) Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci 26(1):125–131CrossRefPubMed
12.
go back to reference de Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana Cde L, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F (2013) Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 89(1):179–188CrossRef de Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana Cde L, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F (2013) Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 89(1):179–188CrossRef
13.
go back to reference Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36(1):8–12CrossRefPubMed Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36(1):8–12CrossRefPubMed
14.
go back to reference Stein A, Benayahu D, Maltz L, Oron U (2005) Low level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166CrossRefPubMed Stein A, Benayahu D, Maltz L, Oron U (2005) Low level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166CrossRefPubMed
15.
go back to reference Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448(3):372–380CrossRefPubMed Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448(3):372–380CrossRefPubMed
16.
go back to reference Góralczyk K, Szymańska J, Łukowicz M, Drela E, Kotzbach R, Dubiel M, Michalska M, Góralczyk B, Zając A, Rość D (2015) Effect of LLLT on endothelial cells culture. Lasers Med Sci 30(1):273–278CrossRefPubMed Góralczyk K, Szymańska J, Łukowicz M, Drela E, Kotzbach R, Dubiel M, Michalska M, Góralczyk B, Zając A, Rość D (2015) Effect of LLLT on endothelial cells culture. Lasers Med Sci 30(1):273–278CrossRefPubMed
17.
go back to reference Derkacz A, Protasiewicz M, Rola P, Podgorska K, Szymczyszyn A, Gutherc R, Poręba R, Doroszko A (2014) Effects of intravascular low-level laser therapy during coronary intervention on selected growth factors levels. Photomed Laser Surg 32(10):582–587CrossRefPubMed Derkacz A, Protasiewicz M, Rola P, Podgorska K, Szymczyszyn A, Gutherc R, Poręba R, Doroszko A (2014) Effects of intravascular low-level laser therapy during coronary intervention on selected growth factors levels. Photomed Laser Surg 32(10):582–587CrossRefPubMed
18.
go back to reference Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tözüm TF (2011) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30(3):149–154CrossRef Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tözüm TF (2011) Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg 30(3):149–154CrossRef
19.
go back to reference Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170CrossRefPubMed Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170CrossRefPubMed
20.
go back to reference Zaidi M, Krolikowki JG, Jones DW, Pritchard KA Jr, Struve J, Nandedkar SD, Lohr NL, Pagel PS, Weihrauch D (2013) Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse. Photochem Photobiol 89(3):709–713CrossRefPubMedPubMedCentral Zaidi M, Krolikowki JG, Jones DW, Pritchard KA Jr, Struve J, Nandedkar SD, Lohr NL, Pagel PS, Weihrauch D (2013) Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse. Photochem Photobiol 89(3):709–713CrossRefPubMedPubMedCentral
21.
go back to reference Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28(2):367–374CrossRefPubMed Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28(2):367–374CrossRefPubMed
22.
go back to reference Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261CrossRefPubMed Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261CrossRefPubMed
23.
go back to reference Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski MW (2003) Generation and role of angiostatin in human platelets. Blood 102(9):3217–3223CrossRefPubMed Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski MW (2003) Generation and role of angiostatin in human platelets. Blood 102(9):3217–3223CrossRefPubMed
24.
go back to reference Bibikova A, Belkin V, Oron U (1994) Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embryol (Berl) 190(6):597–602CrossRef Bibikova A, Belkin V, Oron U (1994) Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embryol (Berl) 190(6):597–602CrossRef
25.
go back to reference Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U (2002) Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal 4(5):785–790CrossRefPubMed Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U (2002) Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal 4(5):785–790CrossRefPubMed
26.
go back to reference Li TS, Kaneda Y, Ueda K, Hamano K, Zempo N, Esato K (2001) The influence of tumour resection on angiostatin levels and tumour growth—an experimental study in tumour-bearing mice. Europ J Cancer 37:2283–2288CrossRef Li TS, Kaneda Y, Ueda K, Hamano K, Zempo N, Esato K (2001) The influence of tumour resection on angiostatin levels and tumour growth—an experimental study in tumour-bearing mice. Europ J Cancer 37:2283–2288CrossRef
27.
go back to reference Houreld NN, Sekhejane PR, Abrahamse H (2010) Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med 42(6):494–502CrossRefPubMed Houreld NN, Sekhejane PR, Abrahamse H (2010) Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med 42(6):494–502CrossRefPubMed
28.
go back to reference Lohr NL, Keszler A, Pratt P, Bienengraber M, Warltier DC, Hogg N (2009) Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J Mol Cell Cardiol 47:256–263CrossRefPubMedPubMedCentral Lohr NL, Keszler A, Pratt P, Bienengraber M, Warltier DC, Hogg N (2009) Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J Mol Cell Cardiol 47:256–263CrossRefPubMedPubMedCentral
29.
go back to reference Samoilova KA, Zhevago NA, Menshutina MA, Grigorieva NB (2008) Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic level: I. diabetic patients. Photomed Laser Surg 26(5):433–42CrossRefPubMed Samoilova KA, Zhevago NA, Menshutina MA, Grigorieva NB (2008) Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic level: I. diabetic patients. Photomed Laser Surg 26(5):433–42CrossRefPubMed
30.
go back to reference Osipov AN, Borisenko GG, Vladimirov YA (2007) Biological activity of hemoprotein nitrosyl complexes. Biochemistry (Mosc) 72(13):1491–1504CrossRef Osipov AN, Borisenko GG, Vladimirov YA (2007) Biological activity of hemoprotein nitrosyl complexes. Biochemistry (Mosc) 72(13):1491–1504CrossRef
31.
go back to reference Damante CA, De Micheli G, Miyagi SP, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891CrossRefPubMed Damante CA, De Micheli G, Miyagi SP, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891CrossRefPubMed
32.
go back to reference Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148:334–336CrossRefPubMed Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148:334–336CrossRefPubMed
33.
go back to reference Plass CA, Wieselthaler GM, Podesser BK, Prusa AM (2012) Low-level-laser irradiation induces photorelaxation in coronary arteries and overcomes vasospasm of internal thoracic arteries. Lasers Surg Med 44:705–711CrossRefPubMed Plass CA, Wieselthaler GM, Podesser BK, Prusa AM (2012) Low-level-laser irradiation induces photorelaxation in coronary arteries and overcomes vasospasm of internal thoracic arteries. Lasers Surg Med 44:705–711CrossRefPubMed
34.
go back to reference Brill GE, Budnik IA, Gasparian LV, Shenkman B, Savion N, Varon D (2008) Influence of laser irradiation of the whole blood in vitro on adhesion and aggregation of blood platelets. Vopr Kurortol Fizioter Lech Fiz Kult 1:15–18PubMed Brill GE, Budnik IA, Gasparian LV, Shenkman B, Savion N, Varon D (2008) Influence of laser irradiation of the whole blood in vitro on adhesion and aggregation of blood platelets. Vopr Kurortol Fizioter Lech Fiz Kult 1:15–18PubMed
35.
go back to reference Brill AG, Shenkman B, Brill GE, Tamarin I, Dardik R, Kirichuk VF, Savion N, Varon D (2000) Blood irradiation by He-Ne laser induces a decrease in platelet responses to physiological agonists and an increase in platelet cyclic GMP. Platelets 11:87–93CrossRefPubMed Brill AG, Shenkman B, Brill GE, Tamarin I, Dardik R, Kirichuk VF, Savion N, Varon D (2000) Blood irradiation by He-Ne laser induces a decrease in platelet responses to physiological agonists and an increase in platelet cyclic GMP. Platelets 11:87–93CrossRefPubMed
Metadata
Title
Effect of the transdermal low-level laser therapy on endothelial function
Authors
Alicja Szymczyszyn
Adrian Doroszko
Ewa Szahidewicz-Krupska
Piotr Rola
Radosław Gutherc
Jakub Jasiczek
Grzegorz Mazur
Arkadiusz Derkacz
Publication date
01-09-2016
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 7/2016
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1971-2

Other articles of this Issue 7/2016

Lasers in Medical Science 7/2016 Go to the issue