Skip to main content
Top
Published in: Lasers in Medical Science 6/2015

01-08-2015 | Original Article

Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells

Authors: Yuichi Miki, Jiro Akimoto, Keiko Moritake, Chihiro Hironaka, Yasuyuki Fujiwara

Published in: Lasers in Medical Science | Issue 6/2015

Login to get access

Abstract

Photodynamic therapy (PDT) using photosensitizer induces several types of cell death, such as apoptosis, necrosis, and autophagy, depending on the PDT procedure, photosensitizer type, and cell type. We previously demonstrated that PDT using the photosensitizer talaporfin sodium (mono-l-aspartyl chlorine e6, NPe6; NPe6-PDT) induces both mitochondrial apoptotic and necrotic cell death in human glioblastoma T98G cells. However, details regarding the mechanism of necrosis caused by NPe6-PDT are unclear. Here, we investigated whether or not necroptosis, a recently suggested form of programmed necrosis, is involved in the necrotic cell death of NPe6-PDT-treated T98G cells. Leakage of lactate dehydrogenase (LDH) from the cell layer into conditioned medium was significantly increased by NPe6 (25 and 50 μg/ml)-PDT, indicating that NPe6-PDT induces necrosis in these cells. NPe6 (25 μg/ml)-PDT treatment also induced conversion of microtubule-associated protein 1 light-chain 3 (LC3)-I into phosphatidylethanolamine-conjugated LC3-II accompanying autophagosome formation, indicators of autophagy; however, of note, NPe6 (50 μg/ml)-PDT did not induce such autophagic changes. In addition, both necrostatin-1 (a necroptosis inhibitor) and knockdown of necroptotic pathway-related proteins [e.g., receptor interacting serine-threonine kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] inhibited leakage of LDH caused by NPe6 (25 μg/ml)-PDT. Taken together, the present findings revealed that NPe6-PDT-induced necrotic cell death is mediated in part by the necroptosis pathway in glioblastoma T98G cells.
Literature
1.
go back to reference Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281PubMedCentralPubMedCrossRef Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281PubMedCentralPubMedCrossRef
2.
go back to reference Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107PubMed Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107PubMed
3.
go back to reference Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387PubMedCrossRef Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387PubMedCrossRef
5.
6.
go back to reference Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390PubMedCrossRef Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390PubMedCrossRef
7.
8.
go back to reference Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119PubMedCrossRef Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119PubMedCrossRef
9.
go back to reference Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714PubMedCrossRef Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714PubMedCrossRef
10.
go back to reference Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223PubMedCrossRef Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223PubMedCrossRef
11.
go back to reference Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109(14):5322–5327PubMedCentralPubMedCrossRef Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109(14):5322–5327PubMedCentralPubMedCrossRef
12.
go back to reference Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65PubMedCrossRef Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65PubMedCrossRef
13.
go back to reference Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J (2011) 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10(12):1868–1878PubMedCrossRef Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J (2011) 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10(12):1868–1878PubMedCrossRef
14.
go back to reference Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99PubMedCrossRef Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99PubMedCrossRef
15.
go back to reference Miki Y, Akimoto J, Yokoyama S, Homma T, Tsutsumi M, Haraoka J, Hirano K, Beppu M (2013) Photodynamic therapy in combination with talaporfin sodium induces mitochondrial apoptotic cell death accompanied with necrosis in glioma cells. Biol Pharm Bull 36(2):215–221PubMedCrossRef Miki Y, Akimoto J, Yokoyama S, Homma T, Tsutsumi M, Haraoka J, Hirano K, Beppu M (2013) Photodynamic therapy in combination with talaporfin sodium induces mitochondrial apoptotic cell death accompanied with necrosis in glioma cells. Biol Pharm Bull 36(2):215–221PubMedCrossRef
16.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728PubMedCentralPubMedCrossRef Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728PubMedCentralPubMedCrossRef
17.
go back to reference Kessel DH, Price M, Reiners JJ Jr (2012) ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 8(9):1333–1341PubMedCentralPubMedCrossRef Kessel DH, Price M, Reiners JJ Jr (2012) ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 8(9):1333–1341PubMedCentralPubMedCrossRef
18.
go back to reference Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA (2008) A method to measure cardiac autophagic flux in vivo. Autophagy 4(3):322–329PubMedCentralPubMedCrossRef Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA (2008) A method to measure cardiac autophagic flux in vivo. Autophagy 4(3):322–329PubMedCentralPubMedCrossRef
19.
go back to reference Miki Y, Akimoto J, Hiranuma M, Fujiwara Y (2014) Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 39(6):821–827PubMedCrossRef Miki Y, Akimoto J, Hiranuma M, Fujiwara Y (2014) Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 39(6):821–827PubMedCrossRef
20.
go back to reference Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1-2):228–243PubMedCrossRef Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1-2):228–243PubMedCrossRef
22.
go back to reference Firczuk M, Nowis D, Golab J (2011) PDT-induced inflammatory and host responses. Photochem Photobiol Sci 10(5):653–663PubMedCrossRef Firczuk M, Nowis D, Golab J (2011) PDT-induced inflammatory and host responses. Photochem Photobiol Sci 10(5):653–663PubMedCrossRef
23.
go back to reference Ogawa A, Wada T, Tedo T, Namiki T (1979) Delayed radiation necrosis of the brain. Neurol Med Chir (Tokyo) 19(4):367–372CrossRef Ogawa A, Wada T, Tedo T, Namiki T (1979) Delayed radiation necrosis of the brain. Neurol Med Chir (Tokyo) 19(4):367–372CrossRef
Metadata
Title
Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells
Authors
Yuichi Miki
Jiro Akimoto
Keiko Moritake
Chihiro Hironaka
Yasuyuki Fujiwara
Publication date
01-08-2015
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 6/2015
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-015-1783-9

Other articles of this Issue 6/2015

Lasers in Medical Science 6/2015 Go to the issue