Skip to main content
Log in

5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Glioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin. They are resistant to all current therapies and are associated with a high rate of recurrence. Glioblastoma were previously shown to respond to treatments by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT) mainly by activating a necrotic type of cell death. The receptor-interacting protein 3 (RIP3) has recently been outlined as a key mediator of this caspase-independent form of programmed cell death. In the present study, we analyzed the necrotic mechanism induced by 5-ALA-PDT in human glioblastoma cells and explored the role of RIP3 in this context. Our results show that PDT-induced necrosis is dependent on RIP3, which forms aggregates and colocalizes with RIP1 following photosensitization. We demonstrate that PDT-mediated singlet oxygen production is the cause of RIP3-dependent necrotic pathway activation. We also prove that PDT induces the formation of a pro-necrotic complex containing RIP3 and RIP1 but lacking caspase-8 and FADD, two proteins usually part of the necrosome when TNF-α is used as a stimulus. Thus, we hypothesize that PDT might lead to the formation of a different necrosome whose components, besides RIP1 and RIP3, are still unknown. In most cases, glioblastoma are characterized by a constitutive activation of NF-κB. This factor is a key regulator of various processes, such as inflammation, immune response, cell growth or apoptosis. Its inhibition was shown to further sensitize glioblastoma cells to PDT-induced necrosis, however, no difference in RIP3 upshift or aggregation could be observed when NF-κB was inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stupp, M. E. Hegi, W. P. Mason, M. J. van den Bent, M. J. Taphoorn, R. C. Janzer, S. K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A. A. Brandes, J. Gijtenbeek, C. Marosi, C. J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J. G. Cairncross and R. O. Mirimanoff, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol., 2009, 10, 459–466.

    Article  CAS  PubMed  Google Scholar 

  2. D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer and P. Kleihues, The 2007 WHO classification of tumours of the central nervous system, Acta Neuropathol., 2007, 114, 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. L. M. DeAngelis, Brain tumors, N. Engl. J. Med., 2001, 344, 114–123.

    Article  CAS  PubMed  Google Scholar 

  4. R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer and R. O. Mirimanoff, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 2005, 352, 987–996.

    Article  CAS  PubMed  Google Scholar 

  5. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  6. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, Photodynamic therapy of cancer: An update, Ca-Cancer J. Clin., 2011, 61(4), 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  7. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    CAS  PubMed  Google Scholar 

  8. Q. Peng, K. Berg, J. Moan, M. Kongshaug and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research, Photochem. Photobiol., 1997, 65, 235–251.

    Article  CAS  PubMed  Google Scholar 

  9. A. Johansson, G. Palte, O. Schnell, J. C. Tonn, J. Herms and H. Stepp, 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors, Photochem. Photobiol., 2010, 86, 1373–1378.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Ohgari, Y. Nakayasu, S. Kitajima, M. Sawamoto, H. Mori, O. Shimokawa, H. Matsui and S. Taketani, Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin, Biochem. Pharmacol., 2005, 71, 42–49.

    Article  CAS  PubMed  Google Scholar 

  11. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella and H. J. Reulen, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, Lancet Oncol., 2006, 7, 392–401.

    Article  CAS  PubMed  Google Scholar 

  12. C. J. Kelty, N. J. Brown, M. W. Reed and R. Ackroyd, The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci., 2002, 1, 158–168.

    Article  CAS  PubMed  Google Scholar 

  13. W. Stummer, T. Beck, W. Beyer, J. H. Mehrkens, A. Obermeier, N. Etminan, H. Stepp, J. C. Tonn, R. Baumgartner, J. Herms and F. W. Kreth, Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report, J. Neuro-Oncol., 2008, 87, 103–109.

    Article  CAS  Google Scholar 

  14. P. W. Yu, B. C. Huang, M. Shen, J. Quast, E. Chan, X. Xu, G. P. Nolan, D. G. Payan and Y. Luo, Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB, Curr. Biol., 1999, 9, 539–542.

    Article  CAS  PubMed  Google Scholar 

  15. X. Sun, J. Lee, T. Navas, D. T. Baldwin, T. A. Stewart and V. M. Dixit, RIP3, a novel apoptosis-inducing kinase, J. Biol. Chem., 1999, 274, 16871–16875.

    Article  CAS  PubMed  Google Scholar 

  16. E. Meylan and J. Tschopp, The RIP kinases: crucial integrators of cellular stress, Trends Biochem. Sci., 2005, 30, 151–159.

    Article  CAS  PubMed  Google Scholar 

  17. D. Zhang, J. Lin and J. Han, Receptor-interacting protein (RIP) kinase family, Cell. Mol. Immunol., 2010, 7, 243–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Sun, J. Yin, M. A. Starovasnik, W. J. Fairbrother and V. M. Dixit, Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3, J. Biol. Chem., 2002, 277, 9505–9511.

    Article  CAS  PubMed  Google Scholar 

  19. Y. S. Cho, S. Challa, D. Moquin, R. Genga, T. D. Ray, M. Guildford and F. K. Chan, Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, 2009, 137, 1112–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. He, L. Wang, L. Miao, T. Wang, F. Du, L. Zhao and X. Wang, Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha, Cell, 2009, 137, 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  21. D. W. Zhang, J. Shao, J. Lin, N. Zhang, B. J. Lu, S. C. Lin, M. Q. Dong and J. Han, RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis, Science, 2009, 325, 332–336.

    Article  CAS  PubMed  Google Scholar 

  22. W. J. Kaiser, J. W. Upton, A. B. Long, D. Livingston-Rosanoff, L. P. Daley-Bauer, R. Hakem, T. Caspary and E. S. Mocarski, RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, 2011, 471, 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Oberst, C. P. Dillon, R. Weinlich, L. L. McCormick, P. Fitzgerald, C. Pop, R. Hakem, G. S. Salvesen and D. R. Green, Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis, Nature, 2011, 471, 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. E. Christofferson and J. Yuan, Necroptosis as an alternative form of programmed cell death, Curr. Opin. Cell Biol., 2010, 22, 263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Moquin and F. K. Chan, The molecular regulation of programmed necrotic cell injury, Trends Biochem. Sci., 2010, 35, 434–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Vandenabeele, W. Declercq, F. Van Herreweghe and T. Vanden Berghe, The role of the kinases RIP1 and RIP3 in TNF-induced necrosis, Sci. Signaling, 2010, 3, re4.

  27. A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G. D. Cuny, T. J. Mitchison, M. A. Moskowitz and J. Yuan, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat. Chem. Biol., 2005, 1, 112–119.

    Article  CAS  PubMed  Google Scholar 

  28. I. Coupienne, S. Bontems, M. Dewaele, N. Rubio, Y. Habraken, S. Fulda, P. Agostinis and J. Piette, NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy, Biochem. Pharmacol., 2011, 81, 606–616.

    Article  CAS  PubMed  Google Scholar 

  29. E. Varfolomeev, J. W. Blankenship, S. M. Wayson, A. V. Fedorova, N. Kayagaki, P. Garg, K. Zobel, J. N. Dynek, L. O. Elliott, H. J. Wallweber, J. A. Flygare, W. J. Fairbrother, K. Deshayes, V. M. Dixit and D. Vucic, IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis, Cell, 2007, 131, 669–681.

    Article  CAS  PubMed  Google Scholar 

  30. C. Krakstad and M. Chekenya, Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics, Mol. Cancer, 2010, 9, 135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. F. Lefranc, J. Brotchi and R. Kiss, Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis, J. Clin. Oncol., 2005, 23, 2411–2422.

    Article  CAS  PubMed  Google Scholar 

  32. P. Vandenabeele, L. Galluzzi, T. Vanden Berghe and G. Kroemer, Molecular mechanisms of necroptosis: an ordered cellular explosion, Nat. Rev. Mol. Cell Biol., 2010, 11, 700–714.

    Article  CAS  PubMed  Google Scholar 

  33. R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  34. S. Karrer, W. Baumler, C. Abels, U. Hohenleutner, M. Landthaler and R. M. Szeimies, Long-pulse dye laser for photodynamic therapy: investigations in vitro and in vivo, Lasers Surg. Med., 1999, 25, 51–59.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Jung, H. Kim, S. H. Min, S. G. Rhee and W. Jeong, Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha, J. Biol. Chem., 2008, 283, 23863–23871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Holler, R. Zaru, O. Micheau, M. Thome, A. Attinger, S. Valitutti, J. L. Bodmer, P. Schneider, B. Seed and J. Tschopp, Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol., 2000, 1, 489–495.

    Article  CAS  PubMed  Google Scholar 

  37. N. Vanlangenakker, T. Vanden Berghe, P. Bogaert, B. Laukens, K. Zobel, K. Deshayes, D. Vucic, S. Fulda, P. Vandenabeele and M. J. Bertrand, cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production, Cell Death Differ., 2011, 18, 656–665.

    Article  CAS  PubMed  Google Scholar 

  38. M. Feoktistova, P. Geserick, B. Kellert, D. P. Dimitrova, C. Langlais, M. Hupe, K. Cain, M. Macfarlane, G. Hacker and M. Leverkus, cIAPs Block Ripoptosome Formation, a RIP1/Caspase-8 Containing Intracellular Cell Death Complex Differentially Regulated by cFLIP Isoforms, Mol. Cell, 2011, 43, 449–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. T. Tenev, K. Bianchi, M. Darding, M. Broemer, C. Langlais, F. Wallberg, A. Zachariou, J. Lopez, M. Macfarlane, K. Cain and P. Meier, The Ripoptosome, a Signaling Platform that Assembles in Response to Genotoxic Stress and Loss of IAPs, Mol. Cell, 2011, 43, 432–448.

    Article  CAS  PubMed  Google Scholar 

  40. I. L. Ch’en, J. S. Tsau, J. D. Molkentin, M. Komatsu and S. M. Hedrick, Mechanisms of necroptosis in T cells, J. Exp. Med., 2011, 208, 633–641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. P. Crepieux, H. Kwon, N. Leclerc, W. Spencer, S. Richard, R. Lin and J. Hiscott, I kappaB alpha physically interacts with a cytoskeleton-associated protein through its signal response domain, Mol. Cell Biol., 1997, 17, 7375–7385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. D. Bartolomeo, M. Corazzari, F. Nazio, S. Oliverio, G. Lisi, M. Antonioli, V. Pagliarini, S. Matteoni, C. Fuoco, L. Giunta, M. D’Amelio, R. Nardacci, A. Romagnoli, M. Piacentini, F. Cecconi and G. M. Fimia, The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy, J. Cell Biol., 2010, 191, 155–168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. C. G. Pham, C. Bubici, F. Zazzeroni, S. Papa, J. Jones, K. Alvarez, S. Jayawardena, E. D. Smaele, R. Cong, C. Beaumont, F. M. Torti, S. V. Torti and G. Franzoso, Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species, Cell, 2004, 119, 529–542.

    Article  CAS  PubMed  Google Scholar 

  44. S. Sakon, X. Xue, M. Takekawa, T. Sasazuki, T. Okazaki, Y. Kojima, J. H. Piao, H. Yagita, K. Okumura, T. Doi and H. Nakano, NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death, EMBO J., 2003, 22, 3898–3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. R. J. Thapa, S. Basagoudanavar, S. Nogusa, K. Irrinki, K. Mallilankaraman, M. J. Slifker, A. A. Beg, M. Madesh and S. Balachandran, NF-{kappa}B protects cells from interferon-{gamma}-induced RIP1-dependent necroptosis, Mol. Cell. Biol., 2011, 31(4), 2934–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Piette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coupienne, I., Fettweis, G., Rubio, N. et al. 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10, 1868–1878 (2011). https://doi.org/10.1039/c1pp05213f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05213f

Navigation