Skip to main content
Top
Published in: Lasers in Medical Science 5/2014

01-09-2014 | Original Article

Optical nerve identification in head and neck surgery after Er:YAG laser ablation

Authors: Florian Stelzle, Christian Knipfer, Bastian Bergauer, Maximilian Rohde, Werner Adler, Katja Tangermann-Gerk, Emeka Nkenke, Michael Schmidt

Published in: Lasers in Medical Science | Issue 5/2014

Login to get access

Abstract

Facial nerve function may be hampered by iatrogenic damage during head and neck laser surgery procedures. Optical techniques can serve as a basis for feedback-controlled tissue-specific laser surgery on the jaw bone and the parotid gland. In order to preserve nerve tissue during laser surgery, the alteration of optical tissue properties through laser-tissue interactions have to be taken into account. It was the aim of this study to evaluate the viability of optical tissue differentiation through diffuse reflectance spectroscopy after exposure to laser light as a basis for a feedback system for tissue-specific laser surgery. Spectra of diffuse reflectance (wavelength, 350–650 nm) of nerves, salivary glands, and cortical and cancellous bone of the midfacial region (ex vivo domestic pig heads) were acquired before/after Er:YAG laser (wavelength, 2.94 μm) ablation (each 16,800 spectra). Principal component analysis was computed followed by quadratic discriminant analysis. The tissue classification performance as well as area under the curve (AUC) sensitivity and specificity for tissue differentiation was assessed before and after laser-tissue exposure. A high classification performance was observed before laser ablation (total error, 7.74 %). Nerve tissue was differentiated from bone and salivary glands with results greater than 0.96 in AUC, sensitivity and specificity. After laser exposure, a total classification error of 18.61 % was observed. The differentiation of nerve tissue was reduced with an AUC of >0.94, sensitivity of >0.95, and specificity >0.87. Er:YAG laser ablation only slightly reduces the differentiation performance through diffuse reflectance in the investigated tissue types. The results show the general viability of diffuse reflectance spectroscopy in identifying neural structures in the vicinity of salivary glands and bone as a basis for nerve preservation during feedback-controlled laser surgery.
Literature
2.
go back to reference Kuttenberger JJ, Stubinger S, Waibel A, Werner M, Klasing M, Ivanenko M, Hering P, Von Rechenberg B, Sader R, Zeilhofer HF (2008) Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg 26:129–136PubMedCrossRef Kuttenberger JJ, Stubinger S, Waibel A, Werner M, Klasing M, Ivanenko M, Hering P, Von Rechenberg B, Sader R, Zeilhofer HF (2008) Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg 26:129–136PubMedCrossRef
3.
go back to reference Stopp S, Svejdar D, von Kienlin E, Deppe H, Lueth TC (2008) A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data. IEEE Trans Biomed Eng 55:1872–1880PubMedCrossRef Stopp S, Svejdar D, von Kienlin E, Deppe H, Lueth TC (2008) A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data. IEEE Trans Biomed Eng 55:1872–1880PubMedCrossRef
4.
go back to reference Spinelli P, Calarco G, Mancini A, Ni XG (2006) Operative colonoscopy in cancer patients. Minim Invasive Ther Allied Technol 15:339–347PubMedCrossRef Spinelli P, Calarco G, Mancini A, Ni XG (2006) Operative colonoscopy in cancer patients. Minim Invasive Ther Allied Technol 15:339–347PubMedCrossRef
5.
go back to reference Colella G, Cannavale R, Vicidomini A, Lanza A (2007) Neurosensory disturbance of the inferior alveolar nerve after bilateral sagittal split osteotomy: a systematic review. J Oral Maxillofac Surg 65:1707–1715PubMedCrossRef Colella G, Cannavale R, Vicidomini A, Lanza A (2007) Neurosensory disturbance of the inferior alveolar nerve after bilateral sagittal split osteotomy: a systematic review. J Oral Maxillofac Surg 65:1707–1715PubMedCrossRef
6.
go back to reference Yoshida T, Nagamine T, Kobayashi T, Michimi N, Nakajima T, Sasakura H, Hanada K (1989) Impairment of the inferior alveolar nerve after sagittal split osteotomy. J Craniomaxillofac Surg 17:271–277PubMedCrossRef Yoshida T, Nagamine T, Kobayashi T, Michimi N, Nakajima T, Sasakura H, Hanada K (1989) Impairment of the inferior alveolar nerve after sagittal split osteotomy. J Craniomaxillofac Surg 17:271–277PubMedCrossRef
7.
go back to reference Marchesi M, Biffoni M, Trinchi S, Turriziani V, Campana FP (2006) Facial nerve function after parotidectomy for neoplasms with deep localization. Surg Today 36:308–311PubMedCrossRef Marchesi M, Biffoni M, Trinchi S, Turriziani V, Campana FP (2006) Facial nerve function after parotidectomy for neoplasms with deep localization. Surg Today 36:308–311PubMedCrossRef
8.
go back to reference Baxter GD, Walsh DM, Allen JM, Lowe AS, Bell AJ (1994) Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol 79:227–234PubMed Baxter GD, Walsh DM, Allen JM, Lowe AS, Bell AJ (1994) Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol 79:227–234PubMed
9.
go back to reference Menovsky T, van den Bergh WM, Beek JF (1996) Effect of CO2 milliwatt laser on peripheral nerves: part I. A dose-response study. Microsurgery 17:562–567PubMedCrossRef Menovsky T, van den Bergh WM, Beek JF (1996) Effect of CO2 milliwatt laser on peripheral nerves: part I. A dose-response study. Microsurgery 17:562–567PubMedCrossRef
10.
go back to reference Menovsky T, Van Den Bergh Weerman M, Beek JF (2000) Effect of CO(2)-milliwatt laser on peripheral nerves: part II. A histological and functional study. Microsurgery 20:150–155PubMedCrossRef Menovsky T, Van Den Bergh Weerman M, Beek JF (2000) Effect of CO(2)-milliwatt laser on peripheral nerves: part II. A histological and functional study. Microsurgery 20:150–155PubMedCrossRef
11.
go back to reference Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2:124–129PubMedCrossRef Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2:124–129PubMedCrossRef
12.
go back to reference Marchesini R, Pignoli E, Tomatis S, Fumagalli S, Sichirollo AE, Di Palma S, Dal Fante M, Spinelli P, Croce AC, Bottiroli G (1994) Ex vivo optical properties of human colon tissue. Lasers Surg Med 15:351–357PubMedCrossRef Marchesini R, Pignoli E, Tomatis S, Fumagalli S, Sichirollo AE, Di Palma S, Dal Fante M, Spinelli P, Croce AC, Bottiroli G (1994) Ex vivo optical properties of human colon tissue. Lasers Surg Med 15:351–357PubMedCrossRef
13.
go back to reference Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543CrossRef Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543CrossRef
14.
go back to reference Ebert DW, Roberts C, Farrar SK, Johnston WM, Litsky AS, Bertone AL (1998) Articular cartilage optical properties in the spectral range 300–850 nm. J Biomed Opt 3:326–333PubMedCrossRef Ebert DW, Roberts C, Farrar SK, Johnston WM, Litsky AS, Bertone AL (1998) Articular cartilage optical properties in the spectral range 300–850 nm. J Biomed Opt 3:326–333PubMedCrossRef
15.
go back to reference Stelzle F, Tangermann-Gerk K, Adler W, Zam A, Schmidt M, Douplik A, Nkenke E (2010) Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery. Lasers Surg Med 42:319–325PubMedCrossRef Stelzle F, Tangermann-Gerk K, Adler W, Zam A, Schmidt M, Douplik A, Nkenke E (2010) Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery. Lasers Surg Med 42:319–325PubMedCrossRef
16.
go back to reference Stelzle F, Zam A, Adler W, Tangermann-Gerk K, Douplik A, Nkenke E, Schmidt M (2011) Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery. J Transl Med 9:20PubMedCentralPubMedCrossRef Stelzle F, Zam A, Adler W, Tangermann-Gerk K, Douplik A, Nkenke E, Schmidt M (2011) Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery. J Transl Med 9:20PubMedCentralPubMedCrossRef
17.
go back to reference Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E (2012) In vivo optical tissue differentiation by diffuse reflectance spectroscopy: preliminary results for tissue-specific laser surgery. Surg Innov 19:385–393PubMedCrossRef Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E (2012) In vivo optical tissue differentiation by diffuse reflectance spectroscopy: preliminary results for tissue-specific laser surgery. Surg Innov 19:385–393PubMedCrossRef
18.
go back to reference Schomacker KT, Walsh JT, Flotte TJ, Deutsch TF (1990) Thermal damage produced by high-lrradiance continuous wave CO2 laser cutting of tissue. Lasers Surg Med 10:74–84PubMedCrossRef Schomacker KT, Walsh JT, Flotte TJ, Deutsch TF (1990) Thermal damage produced by high-lrradiance continuous wave CO2 laser cutting of tissue. Lasers Surg Med 10:74–84PubMedCrossRef
19.
go back to reference Ritz JP, Roggan A, Germer CT, Isbert C, Muller G, Buhr HJ (2001) Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy. Lasers Surg Med 28:307–312PubMedCrossRef Ritz JP, Roggan A, Germer CT, Isbert C, Muller G, Buhr HJ (2001) Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy. Lasers Surg Med 28:307–312PubMedCrossRef
20.
go back to reference Ross EV, McKinlay JR, Sajben FP, Miller CH, Barnette DJ, Meehan KJ, Chhieng NP, Deavers MJ, Zelickson BD (2002) Use of a novel erbium laser in a Yucatan minipig: a study of residual thermal damage, ablation, and wound healing as a function of pulse duration. Lasers Surg Med 30:93–100PubMedCrossRef Ross EV, McKinlay JR, Sajben FP, Miller CH, Barnette DJ, Meehan KJ, Chhieng NP, Deavers MJ, Zelickson BD (2002) Use of a novel erbium laser in a Yucatan minipig: a study of residual thermal damage, ablation, and wound healing as a function of pulse duration. Lasers Surg Med 30:93–100PubMedCrossRef
21.
go back to reference Lukianova-Hleb EY, Oginsky AO, Olson JS, Lapotko DO (2011) Short laser pulse-induced irreversible photothermal effects in red blood cells. Lasers Surg Med 43:249–260PubMedCrossRef Lukianova-Hleb EY, Oginsky AO, Olson JS, Lapotko DO (2011) Short laser pulse-induced irreversible photothermal effects in red blood cells. Lasers Surg Med 43:249–260PubMedCrossRef
22.
go back to reference Choi JY, Tanenbaum BS, Milner TE, Dao XV, Nelson JS, Sobol EN, Wong BJ (2001) Theramal, mechanical, optical, and morphologic changes in bovine nucleus pulposus induced by Nd:YAG (lambda = 1.32 microm) laser irradiation. Lasers Surg Med 28:248–254PubMedCrossRef Choi JY, Tanenbaum BS, Milner TE, Dao XV, Nelson JS, Sobol EN, Wong BJ (2001) Theramal, mechanical, optical, and morphologic changes in bovine nucleus pulposus induced by Nd:YAG (lambda = 1.32 microm) laser irradiation. Lasers Surg Med 28:248–254PubMedCrossRef
23.
go back to reference Ivanenko MM, Fahimi-Weber S, Mitra T, Wierich W, Hering P (2002) Bone tissue ablation with sub-microS pulses of a Q-switch CO(2) laser: histological examination of thermal side effects. Lasers Med Sci 17:258–264PubMedCrossRef Ivanenko MM, Fahimi-Weber S, Mitra T, Wierich W, Hering P (2002) Bone tissue ablation with sub-microS pulses of a Q-switch CO(2) laser: histological examination of thermal side effects. Lasers Med Sci 17:258–264PubMedCrossRef
24.
go back to reference Jiao J, Guo Z (2009) Thermal interaction of short-pulsed laser focused beams with skin tissues. Phys Med Biol 54:4225–4241PubMedCrossRef Jiao J, Guo Z (2009) Thermal interaction of short-pulsed laser focused beams with skin tissues. Phys Med Biol 54:4225–4241PubMedCrossRef
25.
go back to reference Stelzle F, Terwey I, Knipfer C, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2012) The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study. J Transl Med 10:123PubMedCentralPubMedCrossRef Stelzle F, Terwey I, Knipfer C, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2012) The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study. J Transl Med 10:123PubMedCentralPubMedCrossRef
26.
go back to reference Development Core Team R (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0 Development Core Team R (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0
29.
go back to reference Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N (2002) Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med 30:191–200PubMedCrossRef Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N (2002) Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med 30:191–200PubMedCrossRef
30.
go back to reference Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG (1999) High-resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res 82:275–284PubMedCrossRef Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG (1999) High-resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res 82:275–284PubMedCrossRef
31.
go back to reference Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer, Berlin Heidelberg Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer, Berlin Heidelberg
32.
go back to reference Kim BM, Feit MD, Rubenchik AM, Mammini BM, Da Silva LB (1998) Optical feedback signal for ultrashort laser pulse ablation of tissue. Appl Surf Sci 127–129:857–862CrossRef Kim BM, Feit MD, Rubenchik AM, Mammini BM, Da Silva LB (1998) Optical feedback signal for ultrashort laser pulse ablation of tissue. Appl Surf Sci 127–129:857–862CrossRef
33.
go back to reference Robertson CW, Williams D (1971) Lambert absorption coefficients of water in the infrared. J Opt Soc Am 61:1316–1320CrossRef Robertson CW, Williams D (1971) Lambert absorption coefficients of water in the infrared. J Opt Soc Am 61:1316–1320CrossRef
34.
go back to reference Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:555–563PubMedCrossRef Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:555–563PubMedCrossRef
35.
go back to reference Romanos G, Ko HH, Froum S, Tarnow D (2009) The use of CO(2) laser in the treatment of peri-implantitis. Photomed Laser Surg 3:381–386CrossRef Romanos G, Ko HH, Froum S, Tarnow D (2009) The use of CO(2) laser in the treatment of peri-implantitis. Photomed Laser Surg 3:381–386CrossRef
36.
go back to reference Luerssen K, Lubatschowski H, Ptok M (2007) Erbium:YAG laser surgery on vocal fold tissue. HNO 55:443–446PubMedCrossRef Luerssen K, Lubatschowski H, Ptok M (2007) Erbium:YAG laser surgery on vocal fold tissue. HNO 55:443–446PubMedCrossRef
37.
go back to reference Ruderman S, Gomes AJ, Stoyneva V, Rogers JD, Fought AJ, Jovanovic BD, Backman V (2010) Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements. Biomed Opt Expr 1:489–499CrossRef Ruderman S, Gomes AJ, Stoyneva V, Rogers JD, Fought AJ, Jovanovic BD, Backman V (2010) Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements. Biomed Opt Expr 1:489–499CrossRef
38.
go back to reference Zhengmao Y, Auner G (2004) Principal component analysis approach for biomedical sample identification. IEEE International Conference on Systems, Man and Cybernetics 10-13 Oct 2:1348-1353 Zhengmao Y, Auner G (2004) Principal component analysis approach for biomedical sample identification. IEEE International Conference on Systems, Man and Cybernetics 10-13 Oct 2:1348-1353
39.
go back to reference Salomatina E, Yaroslavsky AN (2008) Evaluation of the in vivo and ex vivo optical properties in a mouse ear model. Phys Med Biol 53:2797–2807PubMedCrossRef Salomatina E, Yaroslavsky AN (2008) Evaluation of the in vivo and ex vivo optical properties in a mouse ear model. Phys Med Biol 53:2797–2807PubMedCrossRef
40.
go back to reference Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42:153–162PubMedCrossRef Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42:153–162PubMedCrossRef
Metadata
Title
Optical nerve identification in head and neck surgery after Er:YAG laser ablation
Authors
Florian Stelzle
Christian Knipfer
Bastian Bergauer
Maximilian Rohde
Werner Adler
Katja Tangermann-Gerk
Emeka Nkenke
Michael Schmidt
Publication date
01-09-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 5/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1569-5

Other articles of this Issue 5/2014

Lasers in Medical Science 5/2014 Go to the issue