Skip to main content
Top
Published in: Lasers in Medical Science 5/2014

Open Access 01-09-2014 | Original Article

Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form

Authors: Takayasu Kawasaki, Jun Fujioka, Takayuki Imai, Kanjiro Torigoe, Koichi Tsukiyama

Published in: Lasers in Medical Science | Issue 5/2014

Login to get access

Abstract

A mid-infrared free-electron laser (FEL) is operated as a pulsed and linearly polarized laser with tunable wavelengths within infrared region. Although the FEL can ablate soft tissues with minimum collateral damage in surgery, the potential of FEL for dissecting protein aggregates is not fully understood. Protein aggregates such as amyloid fibrils are in some cases involved in serious diseases. In our previous study, we showed that amyloid-like lysozyme fibrils could be disaggregated into the native form with FEL irradiation specifically tuned to the amide I band (1,620 cm−1). Here, we show further evidence for the FEL-mediated disaggregation of amyloid-like fibrils using insulin fibrils. Insulin fibrils were prepared in acidic solution and irradiated by the FEL, which was tuned to either 1,620 or 2,000 cm−1 prior to the experiment. The Fourier transform infrared spectroscopy (FT-IR) spectrum after irradiation with the FEL at 1,620 cm−1 indicated that the broad peak (1,630–1,660 cm−1) became almost a single peak (1,652 cm−1), and the β-sheet content was reduced to 25 from 40 % in the fibrils, while that following the irradiation at 2,000 cm−1 remained at 38 %. The Congo Red assay as well as transmission electron microscopy observation confirmed that the number of fibrils was reduced by FEL irradiation at the amide I band. Size-exclusion chromatography analysis indicated that the disaggregated form of fibrils was the monomeric form. These results confirm that FEL irradiation at the amide I band can dissect amyloid-like protein fibrils into the monomeric form in vitro.
Literature
1.
go back to reference Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, Werkhaven J, O’Day D (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371:416–419PubMedCrossRef Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, Werkhaven J, O’Day D (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371:416–419PubMedCrossRef
2.
go back to reference Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644PubMedCrossRef Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644PubMedCrossRef
3.
go back to reference Edwards GS, Hutson MS (2003) Advantage of the Mark-III FEL for biophysical research and biomedical applications. J Synchrotron Radiat 10:354–357PubMedCrossRef Edwards GS, Hutson MS (2003) Advantage of the Mark-III FEL for biophysical research and biomedical applications. J Synchrotron Radiat 10:354–357PubMedCrossRef
4.
go back to reference Austin RH, Xie A, van der Meer L, Redlich B, Lindgård PA, Frauenfelder H, Fu D (2005) Picosecond thermometer in the amide I band of myoglobin. Phys Rev Lett 94:1281011–1281014CrossRef Austin RH, Xie A, van der Meer L, Redlich B, Lindgård PA, Frauenfelder H, Fu D (2005) Picosecond thermometer in the amide I band of myoglobin. Phys Rev Lett 94:1281011–1281014CrossRef
5.
go back to reference Jaeqx S, Du W, Meijer EJ, Oomens J, Rijs AM (2012) Conformational study of Z-Glu-OH and Z-Arg-OH: dispersion interactions versus conventional hydrogen bonding. J Phys Chem A 117:1216–1227PubMedCrossRef Jaeqx S, Du W, Meijer EJ, Oomens J, Rijs AM (2012) Conformational study of Z-Glu-OH and Z-Arg-OH: dispersion interactions versus conventional hydrogen bonding. J Phys Chem A 117:1216–1227PubMedCrossRef
6.
go back to reference Mackanos MA, Simanovskii DM, Contag CH, Kozub JA, Jansen ED (2012) Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL). Lasers Med Sci 27:1213–1223PubMedCrossRef Mackanos MA, Simanovskii DM, Contag CH, Kozub JA, Jansen ED (2012) Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL). Lasers Med Sci 27:1213–1223PubMedCrossRef
7.
go back to reference Devaux BC, Roux FX (1996) Experimental and clinical standards, and evolution of lasers in neurosurgery. Acta Neurochir (Wien) 138:1135–1147CrossRef Devaux BC, Roux FX (1996) Experimental and clinical standards, and evolution of lasers in neurosurgery. Acta Neurochir (Wien) 138:1135–1147CrossRef
8.
go back to reference Xiao Y, Guo M, Zhang P, Shanmugam G, Polavarapu PL, Hutson MS (2008) Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea. Biophys J 94:1359–1366PubMedCentralPubMedCrossRef Xiao Y, Guo M, Zhang P, Shanmugam G, Polavarapu PL, Hutson MS (2008) Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea. Biophys J 94:1359–1366PubMedCentralPubMedCrossRef
9.
go back to reference Zavalin A, Hachey DL, Sundaramoorthy M, Banerjee S, Morgan S, Feldman L, Tolk N, Piston DW (2008) Kinetics of a collagen-like polypeptide fragmentation after mid-IR free-electron laser ablation. Biophys J 95:1371–1381PubMedCentralPubMedCrossRef Zavalin A, Hachey DL, Sundaramoorthy M, Banerjee S, Morgan S, Feldman L, Tolk N, Piston DW (2008) Kinetics of a collagen-like polypeptide fragmentation after mid-IR free-electron laser ablation. Biophys J 95:1371–1381PubMedCentralPubMedCrossRef
10.
go back to reference Hutson MS, Ivanov B, Jayasinghe A, Adunas G, Xiao Y, Guo M, Kozub J (2009) Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea. Opt Express 17:9840–9850PubMedCrossRef Hutson MS, Ivanov B, Jayasinghe A, Adunas G, Xiao Y, Guo M, Kozub J (2009) Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea. Opt Express 17:9840–9850PubMedCrossRef
11.
go back to reference Ovelmen-Levitt J, Straub KD, Hauger S, Szarmes E, Madey J, Pearlstein RD, Nashold BS Jr (2003) Brain ablation in the rat cerebral cortex using a tunable-free electron laser. Lasers Surg Med 33:81–92PubMedCrossRef Ovelmen-Levitt J, Straub KD, Hauger S, Szarmes E, Madey J, Pearlstein RD, Nashold BS Jr (2003) Brain ablation in the rat cerebral cortex using a tunable-free electron laser. Lasers Surg Med 33:81–92PubMedCrossRef
12.
go back to reference Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS (2011) Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed Opt Express 2:1275–1281PubMedCentralPubMedCrossRef Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS (2011) Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed Opt Express 2:1275–1281PubMedCentralPubMedCrossRef
13.
go back to reference Nomaru K, Kawai M, Yokoyama M, Oda F, Nakayama A, Koike H, Kuroda H (2000) Optical beam transport system at FEL-SUT. Nucl Instrum Meth Phys Res A 445:379–383CrossRef Nomaru K, Kawai M, Yokoyama M, Oda F, Nakayama A, Koike H, Kuroda H (2000) Optical beam transport system at FEL-SUT. Nucl Instrum Meth Phys Res A 445:379–383CrossRef
14.
go back to reference Kawasaki T, Fujioka J, Imai T, Tsukiyama K (2012) Effect of mid-infrared free-electron laser irradiation on refolding of amyloid-like fibrils of lysozyme into native form. Protein J 31:710–716PubMedCentralPubMedCrossRef Kawasaki T, Fujioka J, Imai T, Tsukiyama K (2012) Effect of mid-infrared free-electron laser irradiation on refolding of amyloid-like fibrils of lysozyme into native form. Protein J 31:710–716PubMedCentralPubMedCrossRef
15.
go back to reference Sood A, Abid M, Sauer C, Hailemichael S, Foster M, Török B, Török M (2011) Disassembly of preformed amyloid beta fibrils by small organofluorine molecules. Bioorg Med Chem Lett 21:2044–2047PubMedCentralPubMedCrossRef Sood A, Abid M, Sauer C, Hailemichael S, Foster M, Török B, Török M (2011) Disassembly of preformed amyloid beta fibrils by small organofluorine molecules. Bioorg Med Chem Lett 21:2044–2047PubMedCentralPubMedCrossRef
16.
go back to reference Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc Natl Acad Sci U S A 109:7717–7722PubMedCentralPubMedCrossRef Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc Natl Acad Sci U S A 109:7717–7722PubMedCentralPubMedCrossRef
17.
go back to reference Zhu HL, Meng SR, Fan JB, Chen J, Liang Y (2011) Fibrillization of human tau is accelerated by exposure to lead via interaction with His-330 and His-362. PLoS One 6:e25020PubMedCentralPubMedCrossRef Zhu HL, Meng SR, Fan JB, Chen J, Liang Y (2011) Fibrillization of human tau is accelerated by exposure to lead via interaction with His-330 and His-362. PLoS One 6:e25020PubMedCentralPubMedCrossRef
18.
go back to reference Smith MH, Miles TF, Sheehan M, Alfieri KN, Kokona B, Fairman R (2010) Polyglutamine fibrils are formed using a simple designed β-hairpin model. Proteins 78:1971–1979PubMedCrossRef Smith MH, Miles TF, Sheehan M, Alfieri KN, Kokona B, Fairman R (2010) Polyglutamine fibrils are formed using a simple designed β-hairpin model. Proteins 78:1971–1979PubMedCrossRef
19.
go back to reference Zandomeneghi G, Krebs MRH, Mccammon MG, Fändrich M (2004) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321PubMedCentralPubMedCrossRef Zandomeneghi G, Krebs MRH, Mccammon MG, Fändrich M (2004) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321PubMedCentralPubMedCrossRef
20.
go back to reference Ball HL, King DS, Cohen FE, Prusiner SB, Baldwin MA (2001) Engineering the prion protein using chemical synthesis. J Peptide Res 58:357–374CrossRef Ball HL, King DS, Cohen FE, Prusiner SB, Baldwin MA (2001) Engineering the prion protein using chemical synthesis. J Peptide Res 58:357–374CrossRef
21.
go back to reference Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 287:42233–42242PubMedCentralPubMedCrossRef Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 287:42233–42242PubMedCentralPubMedCrossRef
22.
go back to reference Hong DP, Fink AL, Uversky VN (2008) Structural characteristics of the α-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223PubMedCentralPubMedCrossRef Hong DP, Fink AL, Uversky VN (2008) Structural characteristics of the α-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223PubMedCentralPubMedCrossRef
23.
go back to reference Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361:551–561PubMedCrossRef Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361:551–561PubMedCrossRef
24.
go back to reference Reches M, Porat Y, Gazit E (2002) Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 277:35475–35480PubMedCrossRef Reches M, Porat Y, Gazit E (2002) Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 277:35475–35480PubMedCrossRef
25.
go back to reference Fändrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci 100:15463–15468PubMedCentralPubMedCrossRef Fändrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci 100:15463–15468PubMedCentralPubMedCrossRef
26.
go back to reference Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675PubMedCrossRef Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675PubMedCrossRef
27.
go back to reference Lu M, Hiramatsu H, Goto Y, Kitagawa T (2006) Structure of interacting segments in the growing amyloid fibril of β2-microglobulin probed with IR spectroscopy. J Mol Biol 362:355–364PubMedCrossRef Lu M, Hiramatsu H, Goto Y, Kitagawa T (2006) Structure of interacting segments in the growing amyloid fibril of β2-microglobulin probed with IR spectroscopy. J Mol Biol 362:355–364PubMedCrossRef
28.
go back to reference Jackson M, Mantsch HH (1991) Protein secondary structure from FT-IR spectroscopy: correlation with dihedral angles from three-dimensional Ramachandran plots. Can J Chem 69:1639–1642CrossRef Jackson M, Mantsch HH (1991) Protein secondary structure from FT-IR spectroscopy: correlation with dihedral angles from three-dimensional Ramachandran plots. Can J Chem 69:1639–1642CrossRef
29.
go back to reference Yamada T, Miyoshi N, Ogawa T, Akao K, Fukuda M, Ogasawara T, Kitagawa Y, Sano K (2002) Observation of molecular changes of a necrotic tissue from a murine carcinoma by Fourier-transform infrared microspectroscopy. Clin Cancer Res 8:2010–2014PubMed Yamada T, Miyoshi N, Ogawa T, Akao K, Fukuda M, Ogasawara T, Kitagawa Y, Sano K (2002) Observation of molecular changes of a necrotic tissue from a murine carcinoma by Fourier-transform infrared microspectroscopy. Clin Cancer Res 8:2010–2014PubMed
30.
go back to reference Klunk WE, Pettegrew JW, Abraham DJ (1989) Two simple methods for quantifying low-affinity dye-substrate binding. J Histochem Cytochem 37:1293–1297PubMedCrossRef Klunk WE, Pettegrew JW, Abraham DJ (1989) Two simple methods for quantifying low-affinity dye-substrate binding. J Histochem Cytochem 37:1293–1297PubMedCrossRef
31.
go back to reference Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev 8:101–112CrossRef Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev 8:101–112CrossRef
32.
go back to reference Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CCF, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793PubMedCrossRef Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CCF, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793PubMedCrossRef
33.
go back to reference Gertz MA (2013) Immunoglobulin light chain amyloidosis: 2013 update on diagnosis, prognosis, and treatment. Am J Hematol 88:417–425 Gertz MA (2013) Immunoglobulin light chain amyloidosis: 2013 update on diagnosis, prognosis, and treatment. Am J Hematol 88:417–425
Metadata
Title
Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form
Authors
Takayasu Kawasaki
Jun Fujioka
Takayuki Imai
Kanjiro Torigoe
Koichi Tsukiyama
Publication date
01-09-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 5/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1577-5

Other articles of this Issue 5/2014

Lasers in Medical Science 5/2014 Go to the issue