Skip to main content
Top
Published in: Lasers in Medical Science 2/2014

Open Access 01-03-2014 | Original Article

Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate

Authors: Wendy S. J. Malskat, Anna A. Poluektova, Cees W. M. van der Geld, H. A. Martino Neumann, Robert A. Weiss, Cornelis M. A. Bruijninckx, Martin J. C. van Gemert

Published in: Lasers in Medical Science | Issue 2/2014

Login to get access

Abstract

Endovenous laser ablation (EVLA) is a commonly used and very effective minimally invasive therapy to manage leg varicosities. Yet, and despite a clinical history of 16 years, no international consensus on a best treatment protocol has been reached so far. Evidence presented in this paper supports the opinion that insufficient knowledge of the underlying physics amongst frequent users could explain this shortcoming. In this review, we will examine the possible modes of action of EVLA, hoping that better understanding of EVLA-related physics stimulates critical appraisal of claims made concerning the efficacy of EVLA devices, and may advance identifying a best possible treatment protocol. Finally, physical arguments are presented to debate on long-standing, but often unfounded, clinical opinions and habits. This includes issues such as (1) the importance of laser power versus the lack of clinical relevance of laser energy (Joule) as used in Joule per centimeter vein length, i.e., in linear endovenous energy density (LEED), and Joule per square centimeter vein wall area, (2) the predicted effectiveness of a higher power and faster pullback velocity, (3) the irrelevance of whether laser light is absorbed by hemoglobin or water, and (4) the effectiveness of reducing the vein diameter during EVLA therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239PubMedCrossRef van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239PubMedCrossRef
2.
go back to reference Vuylsteke ME, Mordon SR (2012) Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 26:424–433PubMedCrossRef Vuylsteke ME, Mordon SR (2012) Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 26:424–433PubMedCrossRef
3.
go back to reference van Gemert MJC, van der Geld CWM, Bruijninckx CMA, Verdaasdonk RM, Neumann HAM (2012) Comment to Vuylsteke ME and Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 2012;26:424-33. Ann Vasc Surg 26:881–883 van Gemert MJC, van der Geld CWM, Bruijninckx CMA, Verdaasdonk RM, Neumann HAM (2012) Comment to Vuylsteke ME and Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 2012;26:424-33. Ann Vasc Surg 26:881–883
4.
go back to reference Navarro L, Navarro N, Salat CB, Gomez JF, Min RJ (2002) Endovascular laser device and treatment of varicose veins. US 6,398,777 B1; patent filed in 1999, granted in 2002 Navarro L, Navarro N, Salat CB, Gomez JF, Min RJ (2002) Endovascular laser device and treatment of varicose veins. US 6,398,777 B1; patent filed in 1999, granted in 2002
5.
go back to reference Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265PubMedCrossRef Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265PubMedCrossRef
6.
go back to reference Mordon SR, Wassmer B, Zemmouri J (2006) Mathematical modeling of endovenous laser treatment (ELT). Biomed Eng Online 5:26 Mordon SR, Wassmer B, Zemmouri J (2006) Mathematical modeling of endovenous laser treatment (ELT). Biomed Eng Online 5:26
7.
go back to reference van Ruijven PWM, Poluektova AA, van Gemert MJC, Neumann HAM, Nijsten T, van der Geld CWM (2014) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers Med Sci. doi:10.1007/s10103-013-1451-x van Ruijven PWM, Poluektova AA, van Gemert MJC, Neumann HAM, Nijsten T, van der Geld CWM (2014) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers Med Sci. doi:10.​1007/​s10103-013-1451-x
8.
9.
go back to reference Disselhoff BCVM, Rem AI, Verdaasdonk RM, der Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76 Disselhoff BCVM, Rem AI, Verdaasdonk RM, der Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76
10.
go back to reference Amzayyb M, van den Bos RR, Kodach VM, de Bruin DM, Nijsten T, Neumann HAM, van Gemert MJC (2010) Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med Sci 25:439–447 Amzayyb M, van den Bos RR, Kodach VM, de Bruin DM, Nijsten T, Neumann HAM, van Gemert MJC (2010) Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med Sci 25:439–447
11.
go back to reference van den Bos RR, Kockaert MA, Neumann HAM, Bremmer RH, Nijsten T, van Gemert MJC (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251, Erratum 2009;24:679 van den Bos RR, Kockaert MA, Neumann HAM, Bremmer RH, Nijsten T, van Gemert MJC (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251, Erratum 2009;24:679
12.
go back to reference Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736PubMedCrossRef Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736PubMedCrossRef
13.
go back to reference van der Geld CWM, van den Bos RR, van Ruijven PWM, Nijsten T, Neumann HAM, van Gemert MJC (2010) The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers Med Sci 25:907–909PubMedCentralPubMedCrossRef van der Geld CWM, van den Bos RR, van Ruijven PWM, Nijsten T, Neumann HAM, van Gemert MJC (2010) The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers Med Sci 25:907–909PubMedCentralPubMedCrossRef
14.
go back to reference Thomsen S, Pearce JA (2011) Thermal damage and rate processes in biologic tissues. In: Welch AJ, van Gemert MJC (eds) Optical–thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, Chapter 13, page 497 Thomsen S, Pearce JA (2011) Thermal damage and rate processes in biologic tissues. In: Welch AJ, van Gemert MJC (eds) Optical–thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, Chapter 13, page 497
15.
go back to reference Verdaasdonk RM, Holstege FC, Jansen ED, Borst C (1991) Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg Med 11:213–222PubMedCrossRef Verdaasdonk RM, Holstege FC, Jansen ED, Borst C (1991) Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg Med 11:213–222PubMedCrossRef
16.
go back to reference Meissner OA, Schmedt CG, Hunger K, Hetterich H, Sroka R, Rieber J, Babaryka G, Steckmeier BM, Reiser M, Siebert U, Mueller-Lisse U (2007) Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy. Eur Radiol 17:2384–2393PubMedCrossRef Meissner OA, Schmedt CG, Hunger K, Hetterich H, Sroka R, Rieber J, Babaryka G, Steckmeier BM, Reiser M, Siebert U, Mueller-Lisse U (2007) Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy. Eur Radiol 17:2384–2393PubMedCrossRef
17.
go back to reference Weiss RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61PubMedCrossRef Weiss RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61PubMedCrossRef
18.
go back to reference Bosschaart N, Edelman G, Aalders MCG, van Leeuwen TG, Faber DJ (2014) A literature review and a novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. doi:10.1007/s10103-013-1446-7 Bosschaart N, Edelman G, Aalders MCG, van Leeuwen TG, Faber DJ (2014) A literature review and a novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. doi:10.​1007/​s10103-013-1446-7
19.
go back to reference Vuylsteke ME, Van Dorpe J, Roelens J, De Bo T, Mordon S, Fourneau I (2010) Intraluminal fibre-tip centering can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg 40:110–116 Vuylsteke ME, Van Dorpe J, Roelens J, De Bo T, Mordon S, Fourneau I (2010) Intraluminal fibre-tip centering can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg 40:110–116
20.
go back to reference Grooten MWM, van der Geld CWM (2009) Predicting heat transfer in long R-134a filled thermosyphons. ASME J Heat Transfer 131:051501–051509CrossRef Grooten MWM, van der Geld CWM (2009) Predicting heat transfer in long R-134a filled thermosyphons. ASME J Heat Transfer 131:051501–051509CrossRef
21.
go back to reference Star WM (2011) Diffusion theory of light transport. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 145–201, Chapter 6 Star WM (2011) Diffusion theory of light transport. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 145–201, Chapter 6
22.
go back to reference Walsh JT (2011) Basic interactions of light with tissue. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 13–15, Chapter 2 Walsh JT (2011) Basic interactions of light with tissue. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 13–15, Chapter 2
23.
go back to reference Poluektova AA, Malskat WSJ, van Gemert MJC, Vuylsteke ME, Bruijninckx CMA, Neumann HAM, van der Geld CWM (2014) Some controversies in Endovenous Laser Ablation of varicose veins addressed by optical–thermal mathematical modeling. Lasers Med Sci. doi:10.1007/s10103-013-1450-y Poluektova AA, Malskat WSJ, van Gemert MJC, Vuylsteke ME, Bruijninckx CMA, Neumann HAM, van der Geld CWM (2014) Some controversies in Endovenous Laser Ablation of varicose veins addressed by optical–thermal mathematical modeling. Lasers Med Sci. doi:10.​1007/​s10103-013-1450-y
24.
go back to reference Almeida J, Mackay E, Javier J, Mauriello J, Raines J (2009) Saphenous laser ablation at 1470 nm targets the vein wall, not blood. Vasc Endovasc Surg 43:467–472CrossRef Almeida J, Mackay E, Javier J, Mauriello J, Raines J (2009) Saphenous laser ablation at 1470 nm targets the vein wall, not blood. Vasc Endovasc Surg 43:467–472CrossRef
25.
go back to reference Goldman MP, Mauricio M, Rao J (2004) Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg 30:1380–1385PubMedCrossRef Goldman MP, Mauricio M, Rao J (2004) Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg 30:1380–1385PubMedCrossRef
26.
go back to reference Vuylsteke M, De Bo T, Dompe G, Di Crisci D, Abbad C, Mordon S (2011) Endovenous laser treatment: is there a clinical difference between using a 1500 nm and a 980 nm diode laser? A multicenter randomised clinical trial. Int Angiol 30:327–334PubMed Vuylsteke M, De Bo T, Dompe G, Di Crisci D, Abbad C, Mordon S (2011) Endovenous laser treatment: is there a clinical difference between using a 1500 nm and a 980 nm diode laser? A multicenter randomised clinical trial. Int Angiol 30:327–334PubMed
27.
go back to reference Beilin LJ, Knight J, Munco-Faure AD, Anderson J (1966) The sodium, potassium, and water content of red blood cells of healthy human adults. J Clin Invest 45:1817–1825PubMedCentralPubMedCrossRef Beilin LJ, Knight J, Munco-Faure AD, Anderson J (1966) The sodium, potassium, and water content of red blood cells of healthy human adults. J Clin Invest 45:1817–1825PubMedCentralPubMedCrossRef
28.
go back to reference Proebstle TM, Moehler T, Gul D, Herdemann S (2005) Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940-nm diode laser. Dermatol Surg 31:1678–1683PubMedCrossRef Proebstle TM, Moehler T, Gul D, Herdemann S (2005) Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940-nm diode laser. Dermatol Surg 31:1678–1683PubMedCrossRef
29.
go back to reference Kabnick LS (2006) Outcome of different endovenous laser wavelengths for great saphenous vein ablation. J Vasc Surg 43:88–93PubMedCrossRef Kabnick LS (2006) Outcome of different endovenous laser wavelengths for great saphenous vein ablation. J Vasc Surg 43:88–93PubMedCrossRef
30.
go back to reference Doganci S, Demirkilic U (2010) Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg 40:254–259PubMedCrossRef Doganci S, Demirkilic U (2010) Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg 40:254–259PubMedCrossRef
31.
go back to reference Desmyttere J, Grard C, Mordon S (2005) A 2 years follow-up study of endovenous 980 nm laser treatment of the great saphenous vein: Role of the blood content in the GSV. Med Laser Appl 20:283–289CrossRef Desmyttere J, Grard C, Mordon S (2005) A 2 years follow-up study of endovenous 980 nm laser treatment of the great saphenous vein: Role of the blood content in the GSV. Med Laser Appl 20:283–289CrossRef
32.
go back to reference Vuylsteke ME, Martinelli T, Van Dorpe J, Roelens J, Mordon S, Fourneau I (2011) Endovenous laser ablation: the role of intraluminal blood. Eur J Vasc Endovasc Surg 42:120–126PubMedCrossRef Vuylsteke ME, Martinelli T, Van Dorpe J, Roelens J, Mordon S, Fourneau I (2011) Endovenous laser ablation: the role of intraluminal blood. Eur J Vasc Endovasc Surg 42:120–126PubMedCrossRef
33.
go back to reference Verdaasdonk RM, Borst C (1995) Optics of fiber and fiber probes. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum Press, New York, p 624 Verdaasdonk RM, Borst C (1995) Optics of fiber and fiber probes. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum Press, New York, p 624
34.
go back to reference Jacques SL (2011) Monte Carlo modeling of light transport in tissue (steady state and time of flight). In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 109–144, Chapter 5 Jacques SL (2011) Monte Carlo modeling of light transport in tissue (steady state and time of flight). In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 109–144, Chapter 5
35.
go back to reference Diller KR (2011) Laser generated heat transfer. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 353–361, Chapter 10 Diller KR (2011) Laser generated heat transfer. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, pp 353–361, Chapter 10
36.
go back to reference Welch AJ, van Gemert MJC, Star WM (2011) Definitions and overview of tissue optics. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, p 52, Chapter 3, Eq. 3.55CrossRef Welch AJ, van Gemert MJC, Star WM (2011) Definitions and overview of tissue optics. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer, Dordrecht, p 52, Chapter 3, Eq. 3.55CrossRef
37.
go back to reference Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York
Metadata
Title
Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate
Authors
Wendy S. J. Malskat
Anna A. Poluektova
Cees W. M. van der Geld
H. A. Martino Neumann
Robert A. Weiss
Cornelis M. A. Bruijninckx
Martin J. C. van Gemert
Publication date
01-03-2014
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 2/2014
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1480-5

Other articles of this Issue 2/2014

Lasers in Medical Science 2/2014 Go to the issue