Skip to main content
Top
Published in: Lasers in Medical Science 3/2010

Open Access 01-05-2010 | Original Article

Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography

Authors: Mustafa Amzayyb, Renate R. van den Bos, Vitali M. Kodach, D. Martijn de Bruin, Tamar Nijsten, H. A. Martino Neumann, Martin J. C. van Gemert

Published in: Lasers in Medical Science | Issue 3/2010

Login to get access

Abstract

Endovenous laser ablation (EVLA) is commonly used to treat saphenous varicosities. Very high temperatures at the laser fibre tip have been reported during EVLA. We hypothesized that the laser irradiation deposits a layer of strongly absorbing carbonized blood of very high temperature on the fibre tip. We sought to prove the existence of these layers and study their properties by optical transmission, optical coherence tomography (OCT) and microscopy. We analysed 23 EVLA fibres, 8 used at 810 nm, 7 at 940 nm and 8 at 1,470 nm. We measured the transmission of these fibres in two wavelength bands (450–950 nm; 950–1,650 nm). We used 1,310 nm OCT to assess the thickness of the layers and the attenuation as a function of depth to determine the absorption coefficient. Microscopy was used to view the tip surface. All fibres showed a slightly increasing transmission with wavelength in the 450–950 nm band, and a virtually wavelength-independent transmission in the 950–1,650 nm band. OCT scans showed a thin layer deposited on all 13 fibres investigated, 6 used at 810 nm, 4 at 940 nm and 3 at 1,470 nm, some with inhomogeneities over the tip area. The average absorption coefficient of the 13 layers was 72 ± 16 mm−1. The average layer thickness estimated from the transmission and absorption measurements was 8.0 ± 2.7 µm. From the OCT data, the average maximal thickness was 26 ± 6 µm. Microscopy of three fibre tips, one for each EVLA wavelength, showed rough, cracked and sometimes seriously damaged tip surfaces. There was no clear correlation between the properties of the layers and the EVLA parameters such as wavelength, except for a positive correlation between layer thickness and total delivered energy. In conclusion, we found strong evidence that all EVLA procedures in blood filled veins deposit a heavily absorbing hot layer of carbonized blood on the fibre tip, with concomitant tip damage. This major EVLA mechanism is unlikely to have much wavelength dependence at similar delivered energies per centimetre of vein. Optical–thermal interaction between the vein wall and the transmitted laser light depends on wavelength.
Literature
1.
go back to reference Van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239CrossRefPubMed Van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T (2009) Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg 49:230–239CrossRefPubMed
2.
go back to reference Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265CrossRefPubMed Mordon SR, Wassmer B, Zemmouri J (2007) Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 39:256–265CrossRefPubMed
3.
go back to reference Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940 nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736CrossRefPubMed Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J (2002) Endovenous treatment of the greater saphenous vein with a 940 nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 35:729–736CrossRefPubMed
4.
go back to reference Fan C-M, Anderson RR (2008) Endovenous laser ablation: mechanism of action. Phlebology 23:206–213CrossRefPubMed Fan C-M, Anderson RR (2008) Endovenous laser ablation: mechanism of action. Phlebology 23:206–213CrossRefPubMed
5.
go back to reference Disselhoff BC, Rem AI, Verdaasdonk RM, Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76CrossRefPubMed Disselhoff BC, Rem AI, Verdaasdonk RM, Kinderen DJ, Moll FL (2008) Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology 23:69–76CrossRefPubMed
6.
go back to reference Van den Bos RR, Kockaert MA, Neumann HA, Bremmer RH, Nijsten T, Van Gemert MJ (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251. Erratum 24:679CrossRefPubMed Van den Bos RR, Kockaert MA, Neumann HA, Bremmer RH, Nijsten T, Van Gemert MJ (2009) Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci 24:247–251. Erratum 24:679CrossRefPubMed
7.
go back to reference Verdaasdonk RM, Holstege FC, Jansen ED, Borst C (1991) Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg Med 11:213–222CrossRefPubMed Verdaasdonk RM, Holstege FC, Jansen ED, Borst C (1991) Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg Med 11:213–222CrossRefPubMed
8.
go back to reference Weiss RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61CrossRefPubMed Weiss RA (2002) Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol Surg 28:56–61CrossRefPubMed
9.
go back to reference de Bruin DM, Burnes DL, Loewenstein J, Chen Y, Chang S, Chen TC, Esmaili DD, de Boer JF (2008) In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci 49:4545–4552CrossRefPubMed de Bruin DM, Burnes DL, Loewenstein J, Chen Y, Chang S, Chen TC, Esmaili DD, de Boer JF (2008) In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci 49:4545–4552CrossRefPubMed
10.
go back to reference Roggan A, Friebel M, Dörschel K, Hahn A, Müller G (1999) Optical properties of circulating human blood in the wavelength range 400–2500 nm. J Biomed Opt 4:36–46CrossRef Roggan A, Friebel M, Dörschel K, Hahn A, Müller G (1999) Optical properties of circulating human blood in the wavelength range 400–2500 nm. J Biomed Opt 4:36–46CrossRef
11.
go back to reference Bolin FP, Preuss LE, Taylor RC, Ference RJ (1989) Refractive index of some mammalian tissues using a fiber optic cladding method. Appl Opt 28:2297–2303CrossRef Bolin FP, Preuss LE, Taylor RC, Ference RJ (1989) Refractive index of some mammalian tissues using a fiber optic cladding method. Appl Opt 28:2297–2303CrossRef
12.
go back to reference Meissner OA, Schmedt C-G, Hunger K, Hetterich H, Sroka R, Rieber J, Babaryka G, Steckmeier BM, Reiser M, Siebert U, Mueller-Lisse U (2007) Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy. Eur Radiol 17:2384–2393CrossRefPubMed Meissner OA, Schmedt C-G, Hunger K, Hetterich H, Sroka R, Rieber J, Babaryka G, Steckmeier BM, Reiser M, Siebert U, Mueller-Lisse U (2007) Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy. Eur Radiol 17:2384–2393CrossRefPubMed
13.
go back to reference van den Bos RR, Neumann M, de Roos K-P, Nijsten T (2009) Endovenous laser ablation – induced complications: review of the literature and new cases. Dermatol Surg 35:1206–1214CrossRef van den Bos RR, Neumann M, de Roos K-P, Nijsten T (2009) Endovenous laser ablation – induced complications: review of the literature and new cases. Dermatol Surg 35:1206–1214CrossRef
14.
go back to reference McKenzie AL (1986) A three-zone model of soft tissue damage by a CO2 laser. Phys Med Biol 31:967–983CrossRefPubMed McKenzie AL (1986) A three-zone model of soft tissue damage by a CO2 laser. Phys Med Biol 31:967–983CrossRefPubMed
15.
go back to reference Germer CT, Roggan A, Ritz J, Isbert C, Albrecht D, Muller G, Buhr HJ (1998) Optical property of native and coagulated human liver tissue and liver metastases in the near infrared region. Lasers Surg Med 23:194–203CrossRefPubMed Germer CT, Roggan A, Ritz J, Isbert C, Albrecht D, Muller G, Buhr HJ (1998) Optical property of native and coagulated human liver tissue and liver metastases in the near infrared region. Lasers Surg Med 23:194–203CrossRefPubMed
16.
go back to reference Vuylsteke M, Van Dorpe J, Roelens J, De Bo T, Mordon S, Fourneau I (2009) Intraluminal fibre-tip centring can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg. doi:10.1016/j.ejvs.2009.09.013 Vuylsteke M, Van Dorpe J, Roelens J, De Bo T, Mordon S, Fourneau I (2009) Intraluminal fibre-tip centring can improve endovenous laser ablation: a histological study. Eur J Vasc Endovasc Surg. doi:10.​1016/​j.​ejvs.​2009.​09.​013
17.
go back to reference Mordon S, Wassmer B, Servell P, Desmyttère J, Grard C, Stalnikiewicz G (2009) Is a vein filled with blood a good model for studying endovenous laser ablation? Lasers Surg Med 41:543–544CrossRefPubMed Mordon S, Wassmer B, Servell P, Desmyttère J, Grard C, Stalnikiewicz G (2009) Is a vein filled with blood a good model for studying endovenous laser ablation? Lasers Surg Med 41:543–544CrossRefPubMed
Metadata
Title
Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography
Authors
Mustafa Amzayyb
Renate R. van den Bos
Vitali M. Kodach
D. Martijn de Bruin
Tamar Nijsten
H. A. Martino Neumann
Martin J. C. van Gemert
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3/2010
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-009-0749-1

Other articles of this Issue 3/2010

Lasers in Medical Science 3/2010 Go to the issue