Skip to main content
Top
Published in: European Journal of Clinical Microbiology & Infectious Diseases 10/2017

01-10-2017 | Review

New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings

Authors: P. Maffert, S. Reverchon, W. Nasser, C. Rozand, H. Abaibou

Published in: European Journal of Clinical Microbiology & Infectious Diseases | Issue 10/2017

Login to get access

Abstract

Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes of fluids on a single platform. Microfluidic technology has recently been applied to paper, which is already used in low-cost lateral flow tests. Nucleic acid extraction from a biological specimen usually requires cell filtration and lysis on specific membranes, while affinity matrices, such as chitosan or polydiacetylene, are well suited to concentrating nucleic acids for subsequent amplification. Access to electricity is often difficult in resource-limited areas, so the amplification step needs to be equipment-free. Consequently, the reaction has to be isothermal to alleviate the need for a thermocycler. LAMP, NASBA, HDA, and RPA are examples of the technologies available. Nucleic acid detection techniques are currently based on fluorescence, colorimetry, or chemiluminescence. For point-of-care diagnostics, the results should be readable with the naked eye. Nowadays, interpretation and communication of results to health professionals could rely on a smartphone, used as a telemedicine device. The major challenge of creating an “all-in-one” diagnostic test involves the design of an optimal solution and a sequence for each analytical step, as well as combining the execution of all these steps on a single device. This review provides an overview of available materials and technologies which seem to be adapted to point-of-care nucleic acid-based diagnosis, in low-resource areas.
Literature
1.
go back to reference Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R (2015) Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5(3):577–601CrossRefPubMedPubMedCentral Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R (2015) Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5(3):577–601CrossRefPubMedPubMedCentral
2.
go back to reference Elston JWT, Cartwright C, Ndumbi P, Wright J (2017) The health impact of the 2014–15 Ebola outbreak. Public Health 143:60–70CrossRefPubMed Elston JWT, Cartwright C, Ndumbi P, Wright J (2017) The health impact of the 2014–15 Ebola outbreak. Public Health 143:60–70CrossRefPubMed
3.
go back to reference Gebre Y, Forbes N, Gebre T (2016) Zika virus infection, transmission, associated neurological disorders and birth abnormalities: a review of progress in research, priorities and knowledge gaps. Asian Pac J Trop Biomed 6(10):815–824CrossRef Gebre Y, Forbes N, Gebre T (2016) Zika virus infection, transmission, associated neurological disorders and birth abnormalities: a review of progress in research, priorities and knowledge gaps. Asian Pac J Trop Biomed 6(10):815–824CrossRef
4.
go back to reference Gupta H et al (2016) New molecular detection methods of malaria parasites with multiple genes from genomes. Acta Trop 160:15–22CrossRefPubMed Gupta H et al (2016) New molecular detection methods of malaria parasites with multiple genes from genomes. Acta Trop 160:15–22CrossRefPubMed
5.
go back to reference Pabbaraju K, Wong S, Gill K, Fonseca K, Tipples GA, Tellier R (2016) Simultaneous detection of Zika, chikungunya and dengue viruses by a multiplex real-time RT-PCR assay. J Clin Virol 83:66–71CrossRefPubMed Pabbaraju K, Wong S, Gill K, Fonseca K, Tipples GA, Tellier R (2016) Simultaneous detection of Zika, chikungunya and dengue viruses by a multiplex real-time RT-PCR assay. J Clin Virol 83:66–71CrossRefPubMed
6.
7.
go back to reference Giuffrida MC, Spoto G (2016) Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens Bioelectron 90:174–186CrossRefPubMed Giuffrida MC, Spoto G (2016) Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens Bioelectron 90:174–186CrossRefPubMed
8.
go back to reference Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49(11):2280–2292CrossRefPubMed Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49(11):2280–2292CrossRefPubMed
9.
go back to reference Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33(2):147–156CrossRefPubMed Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33(2):147–156CrossRefPubMed
10.
13.
go back to reference Chen C, Liu P, Zhao X, Du W, Feng X, Liu B-F (2017) A self-contained microfluidic in-gel loop-mediated isothermal amplification for multiplexed pathogen detection. Sens. Actuators B Chem 239:1–8CrossRef Chen C, Liu P, Zhao X, Du W, Feng X, Liu B-F (2017) A self-contained microfluidic in-gel loop-mediated isothermal amplification for multiplexed pathogen detection. Sens. Actuators B Chem 239:1–8CrossRef
14.
go back to reference Sun Y, Kwok YC (2006) Polymeric microfluidic system for DNA analysis. Anal Chim Acta 556(1):80–96CrossRefPubMed Sun Y, Kwok YC (2006) Polymeric microfluidic system for DNA analysis. Anal Chim Acta 556(1):80–96CrossRefPubMed
15.
go back to reference Ren K, Chen Y, Wu H (2014) New materials for microfluidics in biology. Curr Opin Biotechnol 25:78–85CrossRefPubMed Ren K, Chen Y, Wu H (2014) New materials for microfluidics in biology. Curr Opin Biotechnol 25:78–85CrossRefPubMed
16.
go back to reference Lopez-Ruiz N et al (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86(19):9554–9562CrossRefPubMed Lopez-Ruiz N et al (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86(19):9554–9562CrossRefPubMed
17.
go back to reference Malekghasemi S, Kahveci E, Duman M (2016) Rapid and alternative fabrication method for microfluidic paper based analytical devices. Talanta 159:401–411CrossRefPubMed Malekghasemi S, Kahveci E, Duman M (2016) Rapid and alternative fabrication method for microfluidic paper based analytical devices. Talanta 159:401–411CrossRefPubMed
18.
go back to reference Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMed Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMed
19.
go back to reference Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707CrossRefPubMedPubMedCentral Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707CrossRefPubMedPubMedCentral
20.
go back to reference Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611CrossRefPubMedPubMedCentral Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611CrossRefPubMedPubMedCentral
21.
go back to reference Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13(17):3323–3346CrossRefPubMed Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13(17):3323–3346CrossRefPubMed
22.
23.
go back to reference Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12(18):3392–3398CrossRefPubMed Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12(18):3392–3398CrossRefPubMed
24.
go back to reference Jangam SR, Yamada DH, McFall SM, Kelso DM (2009) Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol 47(8):2363–2368CrossRefPubMedPubMedCentral Jangam SR, Yamada DH, McFall SM, Kelso DM (2009) Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol 47(8):2363–2368CrossRefPubMedPubMedCentral
25.
go back to reference McFall SM, Wagner RL, Jangam SR, Yamada DH, Hardie D, Kelso DM (2015) A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR. J Virol Methods 214:37–42CrossRefPubMed McFall SM, Wagner RL, Jangam SR, Yamada DH, Hardie D, Kelso DM (2015) A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR. J Virol Methods 214:37–42CrossRefPubMed
26.
go back to reference Linnes JC, Fan A, Rodriguez NM, Lemieux B, Kong H, Klapperich CM (2014) Paper-based molecular diagnostic for chlamydia trachomatis. RSC Adv 4(80):42245–42251CrossRefPubMedPubMedCentral Linnes JC, Fan A, Rodriguez NM, Lemieux B, Kong H, Klapperich CM (2014) Paper-based molecular diagnostic for chlamydia trachomatis. RSC Adv 4(80):42245–42251CrossRefPubMedPubMedCentral
27.
go back to reference Lu W et al (2016) High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosens Bioelectron 75:28–33CrossRefPubMed Lu W et al (2016) High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosens Bioelectron 75:28–33CrossRefPubMed
28.
go back to reference Rahman MM, Elaissari A (2012) Nucleic acid sample preparation for in vitro molecular diagnosis: from conventional techniques to biotechnology. Drug Discov Today 17(21–22):1199–1207CrossRefPubMed Rahman MM, Elaissari A (2012) Nucleic acid sample preparation for in vitro molecular diagnosis: from conventional techniques to biotechnology. Drug Discov Today 17(21–22):1199–1207CrossRefPubMed
29.
go back to reference Giordano BC, Burgi DS, Hart SJ, Terray A (2012) On-line sample pre-concentration in microfluidic devices: a review. Anal. Chim. Acta 718:11–24 Giordano BC, Burgi DS, Hart SJ, Terray A (2012) On-line sample pre-concentration in microfluidic devices: a review. Anal. Chim. Acta 718:11–24
30.
go back to reference Byrnes SA, Bishop JD, Lafleur L, Buser JR, Lutz B, Yager P (2015) One-step purification and concentration of DNA in porous membranes for point-of-care applications. Lab Chip 15(12):2647–2659CrossRefPubMed Byrnes SA, Bishop JD, Lafleur L, Buser JR, Lutz B, Yager P (2015) One-step purification and concentration of DNA in porous membranes for point-of-care applications. Lab Chip 15(12):2647–2659CrossRefPubMed
31.
go back to reference Rosser A, Rollinson D, Forrest M, Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 8:446CrossRefPubMedPubMedCentral Rosser A, Rollinson D, Forrest M, Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 8:446CrossRefPubMedPubMedCentral
32.
go back to reference Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W (2012) Diagnostic devices for isothermal nucleic acid amplification. Sensors 12(6):8319–8337CrossRefPubMedPubMedCentral Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W (2012) Diagnostic devices for isothermal nucleic acid amplification. Sensors 12(6):8319–8337CrossRefPubMedPubMedCentral
33.
go back to reference Nkouawa A, Sako Y, Okamoto M, Ito A (2016) Simple identification of human Taenia species by multiplex loop-mediated isothermal amplification in combination with dot enzyme-linked immunosorbent assay. AmJTrop Med Hyg 94(6):1318–1323CrossRef Nkouawa A, Sako Y, Okamoto M, Ito A (2016) Simple identification of human Taenia species by multiplex loop-mediated isothermal amplification in combination with dot enzyme-linked immunosorbent assay. AmJTrop Med Hyg 94(6):1318–1323CrossRef
35.
go back to reference Martínez-Valladares M, Rojo-Vázquez FA (2016) Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions. Parasit Vectors 9:73CrossRefPubMedPubMedCentral Martínez-Valladares M, Rojo-Vázquez FA (2016) Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions. Parasit Vectors 9:73CrossRefPubMedPubMedCentral
36.
go back to reference Abbasi I, Kirstein OD, Hailu A, Warburg A (2016) Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop 162:20–26CrossRefPubMedPubMedCentral Abbasi I, Kirstein OD, Hailu A, Warburg A (2016) Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop 162:20–26CrossRefPubMedPubMedCentral
38.
go back to reference Guarné A, Charbonnier J-B (2015) Insights from a decade of biophysical studies on MutL: roles in strand discrimination and mismatch removal. Prog Biophys Mol Biol 117(2–3):149–156CrossRefPubMed Guarné A, Charbonnier J-B (2015) Insights from a decade of biophysical studies on MutL: roles in strand discrimination and mismatch removal. Prog Biophys Mol Biol 117(2–3):149–156CrossRefPubMed
40.
go back to reference Deiman B, van Aarle P, Sillekens P (2002) Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol 20(2):163–179CrossRefPubMed Deiman B, van Aarle P, Sillekens P (2002) Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol 20(2):163–179CrossRefPubMed
41.
go back to reference Esch MB, Locascio LE, Tarlov MJ, Durst RA (2001) Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. Anal Chem 73(13):2952–2958CrossRefPubMed Esch MB, Locascio LE, Tarlov MJ, Durst RA (2001) Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. Anal Chem 73(13):2952–2958CrossRefPubMed
44.
go back to reference Moody C, Newell H, Viljoen H (2016) A mathematical model of recombinase polymerase amplification under continuously stirred conditions. Biochem Eng J 112:193–201CrossRef Moody C, Newell H, Viljoen H (2016) A mathematical model of recombinase polymerase amplification under continuously stirred conditions. Biochem Eng J 112:193–201CrossRef
45.
46.
go back to reference Lillis L et al (2014) Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One 9(9):e108189CrossRefPubMedPubMedCentral Lillis L et al (2014) Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One 9(9):e108189CrossRefPubMedPubMedCentral
47.
go back to reference Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696CrossRefPubMedPubMedCentral Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696CrossRefPubMedPubMedCentral
48.
go back to reference Shi C, Shang F, Pan M, Liu S, Ma C (2016) The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe. Biosens Bioelectron 80:54–58CrossRefPubMed Shi C, Shang F, Pan M, Liu S, Ma C (2016) The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe. Biosens Bioelectron 80:54–58CrossRefPubMed
49.
go back to reference Ducani C, Bernardinelli G, Högberg B (2014) Rolling circle replication requires single-stranded DNA binding protein to avoid termination and production of double-stranded DNA. Nucleic Acids Res 42(16):10596–10604CrossRefPubMedPubMedCentral Ducani C, Bernardinelli G, Högberg B (2014) Rolling circle replication requires single-stranded DNA binding protein to avoid termination and production of double-stranded DNA. Nucleic Acids Res 42(16):10596–10604CrossRefPubMedPubMedCentral
50.
go back to reference Rohrman BA, Richards-Kortum RR (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12(17):3082–3088CrossRefPubMedPubMedCentral Rohrman BA, Richards-Kortum RR (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12(17):3082–3088CrossRefPubMedPubMedCentral
51.
go back to reference Linnes JC, Rodriguez NM, Liu L, Klapperich CM (2016) Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 18(2):30CrossRefPubMedPubMedCentral Linnes JC, Rodriguez NM, Liu L, Klapperich CM (2016) Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 18(2):30CrossRefPubMedPubMedCentral
52.
go back to reference Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8):1420CrossRefPubMed Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8):1420CrossRefPubMed
53.
go back to reference LaBarre P et al. (2011) A simple, inexpensive device for nucleic acid amplification without electricity—toward instrument-free molecular diagnostics in low-resource settings. PLoS ONE 6(5):e19738CrossRefPubMedPubMedCentral LaBarre P et al. (2011) A simple, inexpensive device for nucleic acid amplification without electricity—toward instrument-free molecular diagnostics in low-resource settings. PLoS ONE 6(5):e19738CrossRefPubMedPubMedCentral
54.
go back to reference Liao S-C et al (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens Actuators B Chem 229:232–238CrossRefPubMedPubMedCentral Liao S-C et al (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens Actuators B Chem 229:232–238CrossRefPubMedPubMedCentral
55.
go back to reference Crannell ZA, Rohrman B, Richards-Kortum R (2014) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 9(11):e112146CrossRefPubMedPubMedCentral Crannell ZA, Rohrman B, Richards-Kortum R (2014) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 9(11):e112146CrossRefPubMedPubMedCentral
56.
go back to reference Branavan M et al (2016) Modular development of a prototype point of care molecular diagnostic platform for sexually transmitted infections. Med Eng Phys 38(8):741–748CrossRefPubMedPubMedCentral Branavan M et al (2016) Modular development of a prototype point of care molecular diagnostic platform for sexually transmitted infections. Med Eng Phys 38(8):741–748CrossRefPubMedPubMedCentral
57.
go back to reference Choi JR, Tang R, Wang S, Wan Abas WAB, Pingguan-Murphy B, Xu F (2015) Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 74:427–439CrossRefPubMed Choi JR, Tang R, Wang S, Wan Abas WAB, Pingguan-Murphy B, Xu F (2015) Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 74:427–439CrossRefPubMed
58.
go back to reference Zhang P, Zhang C, Shu B (2016) Micropatterned paper devices using amine-terminated polydiacetylene vesicles as colorimetric probes for enhanced detection of double-stranded DNA. Sens Actuators B Chem 236:27–34CrossRef Zhang P, Zhang C, Shu B (2016) Micropatterned paper devices using amine-terminated polydiacetylene vesicles as colorimetric probes for enhanced detection of double-stranded DNA. Sens Actuators B Chem 236:27–34CrossRef
59.
go back to reference Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882CrossRefPubMed Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882CrossRefPubMed
60.
go back to reference Goto M, Honda E, Ogura A, Nomoto A, Hanaki K-I (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46(3):167–172CrossRefPubMed Goto M, Honda E, Ogura A, Nomoto A, Hanaki K-I (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46(3):167–172CrossRefPubMed
61.
go back to reference Tanner NA, Zhang Y, Evans TC (2015) Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques 58(2):59-68CrossRefPubMed Tanner NA, Zhang Y, Evans TC (2015) Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques 58(2):59-68CrossRefPubMed
62.
go back to reference Miyamoto S, Sano S, Takahashi K, Jikihara T (2015) Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes. Anal Biochem 473:28–33CrossRefPubMed Miyamoto S, Sano S, Takahashi K, Jikihara T (2015) Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes. Anal Biochem 473:28–33CrossRefPubMed
63.
go back to reference Gomez A, Miller NS, Smolina I (2014) Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes. Anal Chem 86(24):11992–11998CrossRefPubMedPubMedCentral Gomez A, Miller NS, Smolina I (2014) Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes. Anal Chem 86(24):11992–11998CrossRefPubMedPubMedCentral
64.
go back to reference Wen J, Chen J, Zhuang L, Zhou S (2016) Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid. Biosens Bioelectron 79:656–660CrossRefPubMed Wen J, Chen J, Zhuang L, Zhou S (2016) Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid. Biosens Bioelectron 79:656–660CrossRefPubMed
65.
go back to reference He Y et al (2011) Ultrasensitive nucleic acid biosensor based on enzyme–gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26(5):2018–2024CrossRefPubMed He Y et al (2011) Ultrasensitive nucleic acid biosensor based on enzyme–gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26(5):2018–2024CrossRefPubMed
66.
go back to reference Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W (2016) Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 81:317–323CrossRefPubMed Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W (2016) Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 81:317–323CrossRefPubMed
67.
go back to reference Khunthong S, Jaroenram W, Arunrut N, Suebsing R, Mungsantisuk I, Kiatpathomchai W (2013) Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 188(1–2):51–56CrossRefPubMed Khunthong S, Jaroenram W, Arunrut N, Suebsing R, Mungsantisuk I, Kiatpathomchai W (2013) Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 188(1–2):51–56CrossRefPubMed
68.
go back to reference Cordray MS, Richards-Kortum RR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium DNA. Malar J 14:472CrossRefPubMedPubMedCentral Cordray MS, Richards-Kortum RR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium DNA. Malar J 14:472CrossRefPubMedPubMedCentral
69.
go back to reference Azam MG, Yamasuji M, Krawczyk T, Shibata T, Kabashima T, Kai M (2015) Chemiluminescence-imaging detection of DNA on a solid-phase membrane by using a peroxidase-labeled macromolecular probe. Talanta 139:138–142CrossRefPubMed Azam MG, Yamasuji M, Krawczyk T, Shibata T, Kabashima T, Kai M (2015) Chemiluminescence-imaging detection of DNA on a solid-phase membrane by using a peroxidase-labeled macromolecular probe. Talanta 139:138–142CrossRefPubMed
71.
go back to reference Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251CrossRefPubMed Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251CrossRefPubMed
Metadata
Title
New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings
Authors
P. Maffert
S. Reverchon
W. Nasser
C. Rozand
H. Abaibou
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Clinical Microbiology & Infectious Diseases / Issue 10/2017
Print ISSN: 0934-9723
Electronic ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-017-3013-9

Other articles of this Issue 10/2017

European Journal of Clinical Microbiology & Infectious Diseases 10/2017 Go to the issue