Skip to main content
Top
Published in: European Journal of Clinical Microbiology & Infectious Diseases 2/2010

01-02-2010 | Article

Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection

Authors: T. Ferry, I. Uçkay, P. Vaudaux, P. François, J. Schrenzel, S. Harbarth, F. Laurent, L. Bernard, F. Vandenesch, J. Etienne, P. Hoffmeyer, D. Lew

Published in: European Journal of Clinical Microbiology & Infectious Diseases | Issue 2/2010

Login to get access

Abstract

The purpose of this study was to determine the clinical and microbiological risk factors for treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) orthopedic device-related infection (ODRI). A retrospective cohort study of patients with MRSA ODRI who were treated at Geneva University Hospitals between 2000 and 2008 was undertaken. Stored MRSA isolates were retrieved for genetic characterization and determination of the vancomycin minimum inhibitory concentration (MIC). Fifty-two patients were included, of whom 23 (44%) had joint arthroplasty and 29 (56%) had osteosynthesis. All 41 of the retrieved MRSA isolates were susceptible to vancomycin (MIC ≤ 2 mg/L) and 35 (85%) shared genetic characteristics of the South German clone (ST228). During a median follow-up of 391 days (range, 4–2,922 days), 18 patients (35%) experienced treatment failure involving MRSA persistence or recurrence. Microbiological factors such as infection with the predominant clone and a vancomycin MIC of 2 mg/L were not associated with treatment failure. Using a Cox proportional hazards model, implant retention (hazard ratio [HR], 4.9; 95% confidence interval [CI], 1.3–18.2; P = 0.017) and single-agent antimicrobial therapy (HR, 4.4; 95% CI, 1.2–16.3; P = 0.025) were independent predictors of treatment failure after debridement. Therapy using a combination of antimicrobials should be considered for patients with MRSA ODRI, especially when implant removal is not feasible.
Literature
2.
go back to reference Widmer AF (2001) New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 33(Suppl 2):S94–S106CrossRefPubMed Widmer AF (2001) New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 33(Suppl 2):S94–S106CrossRefPubMed
3.
4.
go back to reference Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRefPubMed Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRefPubMed
5.
go back to reference Kilgus DJ, Howe DJ, Strang A (2002) Results of periprosthetic hip and knee infections caused by resistant bacteria. Clin Orthop Relat Res 404:116–124CrossRefPubMed Kilgus DJ, Howe DJ, Strang A (2002) Results of periprosthetic hip and knee infections caused by resistant bacteria. Clin Orthop Relat Res 404:116–124CrossRefPubMed
6.
go back to reference Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305CrossRefPubMed Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305CrossRefPubMed
7.
go back to reference Tsukayama DT, Wicklund B, Gustilo RB (1991) Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopedics 14:841–844PubMed Tsukayama DT, Wicklund B, Gustilo RB (1991) Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopedics 14:841–844PubMed
8.
go back to reference Wilson MG, Kelley K, Thornhill TS (1990) Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am 72:878–883PubMed Wilson MG, Kelley K, Thornhill TS (1990) Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am 72:878–883PubMed
9.
go back to reference Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case–control study. Clin Infect Dis 27:1247–1254CrossRefPubMed Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case–control study. Clin Infect Dis 27:1247–1254CrossRefPubMed
10.
go back to reference Betsch BY, Eggli S, Siebenrock KA et al (2008) Treatment of joint prosthesis infection in accordance with current recommendations improves outcome. Clin Infect Dis 46:1221–1226CrossRefPubMed Betsch BY, Eggli S, Siebenrock KA et al (2008) Treatment of joint prosthesis infection in accordance with current recommendations improves outcome. Clin Infect Dis 46:1221–1226CrossRefPubMed
11.
go back to reference Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161CrossRefPubMed Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161CrossRefPubMed
12.
go back to reference Salgado CD, Dash S, Cantey JR et al (2007) Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin Orthop Relat Res 461:48–53PubMed Salgado CD, Dash S, Cantey JR et al (2007) Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin Orthop Relat Res 461:48–53PubMed
13.
go back to reference Soriano A, Marco F, Martínez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200CrossRefPubMed Soriano A, Marco F, Martínez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200CrossRefPubMed
14.
go back to reference Ferry T, Bes M, Dauwalder O et al (2006) Toxin gene content of the Lyon methicillin-resistant Staphylococcus aureus clone compared with that of other pandemic clones. J Clin Microbiol 44:2642–2644CrossRefPubMed Ferry T, Bes M, Dauwalder O et al (2006) Toxin gene content of the Lyon methicillin-resistant Staphylococcus aureus clone compared with that of other pandemic clones. J Clin Microbiol 44:2642–2644CrossRefPubMed
15.
go back to reference Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189CrossRefPubMed Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189CrossRefPubMed
16.
go back to reference Amaral MM, Coelho LR, Flores RP et al (2005) The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192:801–810CrossRefPubMed Amaral MM, Coelho LR, Flores RP et al (2005) The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192:801–810CrossRefPubMed
17.
go back to reference Charlson ME, Pompei P, Ales KL et al (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383CrossRefPubMed Charlson ME, Pompei P, Ales KL et al (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383CrossRefPubMed
18.
go back to reference Zimmerli W, Ochsner PE (2003) Management of infection associated with prosthetic joints. Infection 31:99–108CrossRefPubMed Zimmerli W, Ochsner PE (2003) Management of infection associated with prosthetic joints. Infection 31:99–108CrossRefPubMed
19.
go back to reference Clinical and Laboratory Standards Institute (CLSI) (2007) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-S17, Wayne, PA Clinical and Laboratory Standards Institute (CLSI) (2007) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-S17, Wayne, PA
20.
go back to reference Francois P, Huyghe A, Charbonnier Y et al (2005) Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43:3346–3355CrossRefPubMed Francois P, Huyghe A, Charbonnier Y et al (2005) Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43:3346–3355CrossRefPubMed
21.
go back to reference Dauwalder O, Lina G, Durand G et al (2008) Epidemiology of invasive methicillin-resistant Staphylococcus aureus clones collected in France in 2006 and 2007. J Clin Microbiol 46:3454–3458CrossRefPubMed Dauwalder O, Lina G, Durand G et al (2008) Epidemiology of invasive methicillin-resistant Staphylococcus aureus clones collected in France in 2006 and 2007. J Clin Microbiol 46:3454–3458CrossRefPubMed
22.
go back to reference Jarraud S, Mougel C, Thioulouse J et al (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641CrossRefPubMed Jarraud S, Mougel C, Thioulouse J et al (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641CrossRefPubMed
23.
go back to reference Kondo Y, Ito T, Ma XX et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274CrossRefPubMed Kondo Y, Ito T, Ma XX et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274CrossRefPubMed
24.
go back to reference François P, Harbarth S, Huyghe A et al (2008) Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993–2005. Emerg Infect Dis 14:304–307CrossRefPubMed François P, Harbarth S, Huyghe A et al (2008) Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993–2005. Emerg Infect Dis 14:304–307CrossRefPubMed
25.
go back to reference Sax H, Posfay-Barbe K, Harbarth S et al (2006) Control of a cluster of community-associated, methicillin-resistant Staphylococcus aureus in neonatology. J Hosp Infect 63:93–100CrossRefPubMed Sax H, Posfay-Barbe K, Harbarth S et al (2006) Control of a cluster of community-associated, methicillin-resistant Staphylococcus aureus in neonatology. J Hosp Infect 63:93–100CrossRefPubMed
26.
go back to reference Concato J, Feinstein AR, Holford TR (1993) The risk of determining risk with multivariable models. Ann Intern Med 118:201–210PubMed Concato J, Feinstein AR, Holford TR (1993) The risk of determining risk with multivariable models. Ann Intern Med 118:201–210PubMed
27.
go back to reference Moise PA, Sakoulas G, Forrest A et al (2007) Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 51:2582–2586CrossRefPubMed Moise PA, Sakoulas G, Forrest A et al (2007) Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 51:2582–2586CrossRefPubMed
28.
go back to reference Knudsen JD, Fuursted K, Raber S et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44:1247–1254CrossRefPubMed Knudsen JD, Fuursted K, Raber S et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44:1247–1254CrossRefPubMed
29.
go back to reference Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM et al (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34:1869–1874PubMed Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM et al (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34:1869–1874PubMed
30.
go back to reference Brandt CM, Sistrunk WW, Duffy MC et al (1997) Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis 24:914–919PubMed Brandt CM, Sistrunk WW, Duffy MC et al (1997) Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis 24:914–919PubMed
31.
go back to reference Marculescu CE, Berbari EF, Hanssen AD et al (2006) Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis 42:471–478CrossRefPubMed Marculescu CE, Berbari EF, Hanssen AD et al (2006) Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis 42:471–478CrossRefPubMed
32.
go back to reference Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541CrossRefPubMed Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541CrossRefPubMed
33.
go back to reference Widmer AF, Frei R, Rajacic Z et al (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102PubMed Widmer AF, Frei R, Rajacic Z et al (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102PubMed
34.
go back to reference Drancourt M, Stein A, Argenson JN et al (1997) Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin. J Antimicrob Chemother 39:235–240CrossRefPubMed Drancourt M, Stein A, Argenson JN et al (1997) Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin. J Antimicrob Chemother 39:235–240CrossRefPubMed
Metadata
Title
Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection
Authors
T. Ferry
I. Uçkay
P. Vaudaux
P. François
J. Schrenzel
S. Harbarth
F. Laurent
L. Bernard
F. Vandenesch
J. Etienne
P. Hoffmeyer
D. Lew
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
European Journal of Clinical Microbiology & Infectious Diseases / Issue 2/2010
Print ISSN: 0934-9723
Electronic ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-009-0837-y

Other articles of this Issue 2/2010

European Journal of Clinical Microbiology & Infectious Diseases 2/2010 Go to the issue