Skip to main content
Top
Published in: Neurological Sciences 3/2022

01-03-2022 | Amyotrophic Lateral Sclerosis | Letter to the Editor

A novel homozygous mutation in TBK1 gene causing ALS-FTD

Authors: Laura Libonati, Marco Ceccanti, Chiara Cambieri, Davide Colavito, Federica Moret, Ilenia Fiorini, Maurizio Inghilleri

Published in: Neurological Sciences | Issue 3/2022

Login to get access

Excerpt

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of both upper and lower motor neurons that leads to a fatal paralysis and death, mainly due to respiratory failure [1] typically after 3–5 years post onset [2]. The average age of onset is between 50 and 65 years[3]. It is a multifactorial disorder with environmental and genetic components [4]. In up to 10% [5] of cases, there is a family history positive for ALS. Mutations in several genes have been linked to the pathogenesis of ALS, such as SOD1, C9orf72, TARDPB, FUS, and NEK1 [5], and many of them are also associated with frontotemporal dementia (FTD) [6], a heterogeneous neurocognitive syndrome characterized by the progressive impairment of language, executive functions, and change in behavior. Two main FTD clinical variants are to date recognized: behavioral (bv-FTD) and primary progressive aphasia (PPA) [7]. The brain usually shows marked atrophy of frontal and temporal lobes [8]. ALS and FTD often overlap in their clinical presentation, genetic mutations, and physiopathology. For many researchers, they represent a spectrum of disease continuum [1, 9]. Recently, thanks to exome sequencing techniques, mutations in the TANK binding kinase 1 (TBK1) have been identified as a cause of ALS [10, 11] and FTD [12]. TBK1 is a multifunctional protein, member of the IKK kinase family, involved in the regulation of multiple processes as innate immunity, inflammation, autophagy, and cell proliferation [13]. Here we present a case of ALS associated with bv-FTD of an Italian woman with a novel homozygous mutation in TBK1 gene. …
Literature
1.
go back to reference Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206CrossRef Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206CrossRef
2.
go back to reference Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238CrossRef Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238CrossRef
3.
go back to reference Johnston CA et al (2006) Amyotrophic lateral sclerosis in an urban setting. J Neurol 253(12):1642–1643CrossRef Johnston CA et al (2006) Amyotrophic lateral sclerosis in an urban setting. J Neurol 253(12):1642–1643CrossRef
4.
go back to reference Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17(1):94–102CrossRef Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17(1):94–102CrossRef
5.
go back to reference Shatunov A, Al-Chalabi A (2021) The genetic architecture of ALS. Neurobiol Dis 147:105156CrossRef Shatunov A, Al-Chalabi A (2021) The genetic architecture of ALS. Neurobiol Dis 147:105156CrossRef
6.
go back to reference Kim G et al (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron 108(5):822–842CrossRef Kim G et al (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron 108(5):822–842CrossRef
7.
go back to reference Devenney EM, Ahmed RM, Hodges JR (2019) Frontotemporal dementia. Handb Clin Neurol 167:279–299CrossRef Devenney EM, Ahmed RM, Hodges JR (2019) Frontotemporal dementia. Handb Clin Neurol 167:279–299CrossRef
8.
go back to reference Greaves CV, Rohrer JD (2019) An update on genetic frontotemporal dementia. J Neurol 266(8):2075–2086CrossRef Greaves CV, Rohrer JD (2019) An update on genetic frontotemporal dementia. J Neurol 266(8):2075–2086CrossRef
9.
go back to reference Shahheydari H et al (2017) Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum. Front Mol Neurosci 10:119CrossRef Shahheydari H et al (2017) Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum. Front Mol Neurosci 10:119CrossRef
10.
go back to reference Cirulli ET et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441CrossRef Cirulli ET et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441CrossRef
11.
go back to reference Pozzi L et al (2017) mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. J Neurol Neurosurg Psychiatry 88(10):869–875CrossRef Pozzi L et al (2017) mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. J Neurol Neurosurg Psychiatry 88(10):869–875CrossRef
12.
go back to reference Nguyen HP, Van Broeckhoven C, van der Zee J (2018) ALS genes in the genomic era and their implications for FTD. Trends Genet 34(6):404–423CrossRef Nguyen HP, Van Broeckhoven C, van der Zee J (2018) ALS genes in the genomic era and their implications for FTD. Trends Genet 34(6):404–423CrossRef
13.
go back to reference Oakes JA, Davies MC, Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10(1):5CrossRef Oakes JA, Davies MC, Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10(1):5CrossRef
14.
go back to reference Saxon JA et al (2020) The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 21(7–8):606–613CrossRef Saxon JA et al (2020) The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 21(7–8):606–613CrossRef
15.
go back to reference Pozzi L et al (2017) TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. J Neurol Neurosurg Psychiatry 88(10):869–875CrossRef Pozzi L et al (2017) TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. J Neurol Neurosurg Psychiatry 88(10):869–875CrossRef
16.
go back to reference Grassano M et al (2021) Mutational analysis of known ALS genes in an Italian population-based cohort. Neurology 96(4):e600–e609CrossRef Grassano M et al (2021) Mutational analysis of known ALS genes in an Italian population-based cohort. Neurology 96(4):e600–e609CrossRef
17.
go back to reference Larabi A et al (2013) Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 3(3):734–746CrossRef Larabi A et al (2013) Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 3(3):734–746CrossRef
18.
go back to reference Freischmidt A et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636CrossRef Freischmidt A et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636CrossRef
19.
go back to reference Gijselinck I et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125CrossRef Gijselinck I et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125CrossRef
20.
go back to reference Swift IJ et al (2021) Variable clinical phenotype in TBK1 mutations: case report of a novel mutation causing primary progressive aphasia and review of the literature. Neurobiol Aging 99:100.e9-100.e15CrossRef Swift IJ et al (2021) Variable clinical phenotype in TBK1 mutations: case report of a novel mutation causing primary progressive aphasia and review of the literature. Neurobiol Aging 99:100.e9-100.e15CrossRef
21.
go back to reference Khoshnood B, Ullgren A, Laffita-Mesa J, Öijerstedt L, Patra K, Nennesmo I, Graff C (2021) TBK1 haploinsufficiency results in changes in the K63-ubiquitination profiles in brain and fibroblasts from affected and presymptomatic mutation carriers. J Neurol. https://doi.org/10.1007/s00415-021-10887-x Khoshnood B, Ullgren A, Laffita-Mesa J, Öijerstedt L, Patra K, Nennesmo I, Graff C (2021) TBK1 haploinsufficiency results in changes in the K63-ubiquitination profiles in brain and fibroblasts from affected and presymptomatic mutation carriers. J Neurol. https://​doi.​org/​10.​1007/​s00415-021-10887-x
22.
go back to reference van der Zee J et al (2017) TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum Mutat 38(3):297–309CrossRef van der Zee J et al (2017) TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum Mutat 38(3):297–309CrossRef
23.
go back to reference Edens BM, Miller N, Ma YC (2016) Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci 10:44CrossRef Edens BM, Miller N, Ma YC (2016) Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci 10:44CrossRef
24.
go back to reference Gerbino V et al (2020) The loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice. Neuron 106(5):789-805.e5CrossRef Gerbino V et al (2020) The loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice. Neuron 106(5):789-805.e5CrossRef
25.
go back to reference Freischmidt A et al (2017) Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia. JAMA Neurol 74(1):110–113CrossRef Freischmidt A et al (2017) Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia. JAMA Neurol 74(1):110–113CrossRef
Metadata
Title
A novel homozygous mutation in TBK1 gene causing ALS-FTD
Authors
Laura Libonati
Marco Ceccanti
Chiara Cambieri
Davide Colavito
Federica Moret
Ilenia Fiorini
Maurizio Inghilleri
Publication date
01-03-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 3/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05820-z

Other articles of this Issue 3/2022

Neurological Sciences 3/2022 Go to the issue