Skip to main content
Top
Published in: Neurological Sciences 3/2022

01-03-2022 | Addiction | Review Article

Addiction-induced plasticity in underlying neural circuits

Authors: Masoumeh Kourosh-Arami, Alireza Komaki, Masoumeh Gholami

Published in: Neurological Sciences | Issue 3/2022

Login to get access

Abstract

Synaptic plasticity, the substrate for learning, has been established in neural reward circuits and might involve in the learning of addictive behaviors. Long-term exposure to addictive drugs caused long-lasting memories of the drug experience. The main clinical problem that involves the persistence of addiction is a relapse that is resulted from the exposure to cues of the drug experience. Persistent forms of synaptic plasticity are associated with some of the behavioral effects of addictive drugs. Here, we present the underlying mechanisms of plasticity induced by different brain reward circuitry. Therefore, we focus on the collected evidence that drugs of abuse can disturb synaptic plasticity in the main brain circuits of addiction. Prevention of these drug-induced synaptic modifications may be helpful in the treatment of this problem of society.
Literature
1.
go back to reference Grzęda E, Wiśniewska RJ (2008) Differentiations of the effect of NMDA on the spatial learning of rats with 4 and 12 week diabetes mellitus. Acta Neurobiol Exp 68:398œ406 Grzęda E, Wiśniewska RJ (2008) Differentiations of the effect of NMDA on the spatial learning of rats with 4 and 12 week diabetes mellitus. Acta Neurobiol Exp 68:398œ406
2.
go back to reference Heidari MH et al (2013) Effect of chronic morphine consumption on synaptic plasticity of rat’s hippocampus: a transmission electron microscopy study. Neurol Res Int 2013 Heidari MH et al (2013) Effect of chronic morphine consumption on synaptic plasticity of rat’s hippocampus: a transmission electron microscopy study. Neurol Res Int 2013
3.
go back to reference Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2(10):695–703PubMedCrossRef Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2(10):695–703PubMedCrossRef
4.
go back to reference Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRef Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRef
5.
go back to reference Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413PubMedCrossRef Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413PubMedCrossRef
6.
go back to reference Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431(7010):760–767PubMedCrossRef Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431(7010):760–767PubMedCrossRef
7.
go back to reference Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44(1):161–179PubMedCrossRef Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44(1):161–179PubMedCrossRef
8.
9.
go back to reference Alcantara AA et al (2011) Cocaine-and morphine-induced synaptic plasticity in the nucleus accumbens. Synapse 65(4):309–320PubMedCrossRef Alcantara AA et al (2011) Cocaine-and morphine-induced synaptic plasticity in the nucleus accumbens. Synapse 65(4):309–320PubMedCrossRef
11.
go back to reference Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2(3):146PubMedCrossRef Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2(3):146PubMedCrossRef
12.
go back to reference Luscher C, Malenka R (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650e663CrossRef Luscher C, Malenka R (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650e663CrossRef
13.
go back to reference Thomas MJ et al (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4(12):1217–1223PubMedCrossRef Thomas MJ et al (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4(12):1217–1223PubMedCrossRef
14.
17.
18.
go back to reference Shen H et al (2011) Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci 108(48):19407–19412PubMedPubMedCentralCrossRef Shen H et al (2011) Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci 108(48):19407–19412PubMedPubMedCentralCrossRef
19.
go back to reference Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14(1):89–95PubMedCrossRef Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14(1):89–95PubMedCrossRef
20.
go back to reference Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27(2):349–357PubMedCrossRef Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27(2):349–357PubMedCrossRef
21.
22.
go back to reference Bellone C, Lüscher C (2005) mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 21(5):1280–1288PubMedCrossRef Bellone C, Lüscher C (2005) mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 21(5):1280–1288PubMedCrossRef
23.
24.
go back to reference Harris G et al (2004) Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience 129(3):841–847PubMedCrossRef Harris G et al (2004) Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience 129(3):841–847PubMedCrossRef
25.
go back to reference Harris GC, Aston-Jones G (2003) Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment. Neuropsychopharmacology 28(1):73–76PubMedCrossRef Harris GC, Aston-Jones G (2003) Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment. Neuropsychopharmacology 28(1):73–76PubMedCrossRef
27.
go back to reference Scofield M et al (2016) The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev 68(3):816–871PubMedPubMedCentralCrossRef Scofield M et al (2016) The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev 68(3):816–871PubMedPubMedCentralCrossRef
28.
go back to reference Bossert JM, Busch RF, Gray SM (2005) The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. NeuroReport 16(9):1013–1016PubMedCrossRef Bossert JM, Busch RF, Gray SM (2005) The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. NeuroReport 16(9):1013–1016PubMedCrossRef
29.
go back to reference Bossert JM et al (2006) The mGluR2/3 agonist LY379268 attenuates context-and discrete cue-induced reinstatement of sucrose seeking but not sucrose self-administration in rats. Behav Brain Res 173(1):148–152PubMedCrossRef Bossert JM et al (2006) The mGluR2/3 agonist LY379268 attenuates context-and discrete cue-induced reinstatement of sucrose seeking but not sucrose self-administration in rats. Behav Brain Res 173(1):148–152PubMedCrossRef
30.
go back to reference Khaleghzadeh-Ahangar H, Haghparast A (2015) Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol Behav 149:212–219PubMedCrossRef Khaleghzadeh-Ahangar H, Haghparast A (2015) Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol Behav 149:212–219PubMedCrossRef
31.
go back to reference Kruyer A, Chioma VC, Kalivas PW (2020) The opioid-addicted tetrapartite synapse. Biol Psychiatry 87(1):34–43PubMedCrossRef Kruyer A, Chioma VC, Kalivas PW (2020) The opioid-addicted tetrapartite synapse. Biol Psychiatry 87(1):34–43PubMedCrossRef
32.
go back to reference Yuan K et al (2017) Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect. Addict Biol 22(6):1756–1767PubMedCrossRef Yuan K et al (2017) Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect. Addict Biol 22(6):1756–1767PubMedCrossRef
33.
go back to reference Chidambaram SB et al (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193PubMedCrossRef Chidambaram SB et al (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193PubMedCrossRef
34.
go back to reference Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26(3):147–154PubMedCrossRef Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26(3):147–154PubMedCrossRef
35.
go back to reference Sjostrom PJ et al (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840PubMedCrossRef Sjostrom PJ et al (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840PubMedCrossRef
36.
go back to reference Beckerman MA, Ogorodnik E, Glass MJ (2013) Acute morphine associated alterations in the subcellular location of the AMPA-GluR1 receptor subunit in dendrites of neurons in the mouse central nucleus of the amygdala: comparisons and contrasts with other glutamate receptor subunits. Synapse 67(10):692–704PubMedPubMedCentralCrossRef Beckerman MA, Ogorodnik E, Glass MJ (2013) Acute morphine associated alterations in the subcellular location of the AMPA-GluR1 receptor subunit in dendrites of neurons in the mouse central nucleus of the amygdala: comparisons and contrasts with other glutamate receptor subunits. Synapse 67(10):692–704PubMedPubMedCentralCrossRef
37.
38.
go back to reference Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15(5):186–191PubMedCrossRef Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15(5):186–191PubMedCrossRef
40.
go back to reference Maisonneuve IM, Ho A, Kreek MJ (1995) Chronic administration of a cocaine “binge” alters basal extracellular levels in male rats: an in vivo microdialysis study. J Pharmacol Exp Ther 272(2):652–657PubMed Maisonneuve IM, Ho A, Kreek MJ (1995) Chronic administration of a cocaine “binge” alters basal extracellular levels in male rats: an in vivo microdialysis study. J Pharmacol Exp Ther 272(2):652–657PubMed
41.
go back to reference Volkow N et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386(6627):830–833PubMedCrossRef Volkow N et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386(6627):830–833PubMedCrossRef
42.
go back to reference Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475PubMedCrossRef Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475PubMedCrossRef
45.
go back to reference Langleben DD et al (2008) Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry 165(3):390–394PubMedCrossRef Langleben DD et al (2008) Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry 165(3):390–394PubMedCrossRef
46.
go back to reference Luigjes JV et al (2012) Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17(6):572–583PubMedCrossRef Luigjes JV et al (2012) Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17(6):572–583PubMedCrossRef
47.
go back to reference Müller UJ et al (2013) Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci 1282(1):119–128PubMedCrossRef Müller UJ et al (2013) Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci 1282(1):119–128PubMedCrossRef
48.
49.
go back to reference Ungless MA et al (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587PubMedCrossRef Ungless MA et al (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587PubMedCrossRef
50.
go back to reference Saal D et al (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37(4):577–582PubMedCrossRef Saal D et al (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37(4):577–582PubMedCrossRef
51.
go back to reference Fitzgerald LW et al (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 16(1):274–282PubMedPubMedCentralCrossRef Fitzgerald LW et al (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 16(1):274–282PubMedPubMedCentralCrossRef
52.
go back to reference Mameli M et al (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12(8):1036–1041PubMedCrossRef Mameli M et al (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12(8):1036–1041PubMedCrossRef
53.
go back to reference Yuan T et al (2013) Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron 80(4):1025–1038PubMedCrossRef Yuan T et al (2013) Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron 80(4):1025–1038PubMedCrossRef
54.
go back to reference Niehaus JL, Murali M, Kauer JA (2010) Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 32(1):108–117PubMedPubMedCentralCrossRef Niehaus JL, Murali M, Kauer JA (2010) Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 32(1):108–117PubMedPubMedCentralCrossRef
55.
56.
go back to reference Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33(6):905–919PubMedCrossRef Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33(6):905–919PubMedCrossRef
57.
go back to reference Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446(7139):1086–1090PubMedCrossRef Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446(7139):1086–1090PubMedCrossRef
58.
go back to reference Bocklisch C et al (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341(6153):1521–1525PubMedCrossRef Bocklisch C et al (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341(6153):1521–1525PubMedCrossRef
60.
go back to reference Groenewegen HJ et al (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877(1):49–63PubMedCrossRef Groenewegen HJ et al (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877(1):49–63PubMedCrossRef
61.
go back to reference Pierce RC et al (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16(4):1550–1560PubMedPubMedCentralCrossRef Pierce RC et al (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16(4):1550–1560PubMedPubMedCentralCrossRef
62.
go back to reference Yao W-D et al (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41(4):625–638PubMedCrossRef Yao W-D et al (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41(4):625–638PubMedCrossRef
63.
go back to reference Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25(40):9144–9151PubMedPubMedCentralCrossRef Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25(40):9144–9151PubMedPubMedCentralCrossRef
64.
65.
66.
go back to reference Ping A et al (2008) Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA-and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Res 1215:173–182PubMedPubMedCentralCrossRef Ping A et al (2008) Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA-and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Res 1215:173–182PubMedPubMedCentralCrossRef
67.
68.
go back to reference Sutton MA et al (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421(6918):70–75PubMedCrossRef Sutton MA et al (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421(6918):70–75PubMedCrossRef
70.
go back to reference Bajo M et al (2011) Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 16(4):551–564PubMedCrossRef Bajo M et al (2011) Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 16(4):551–564PubMedCrossRef
71.
go back to reference Kang-Park M-H et al (2009) μ-Opioid receptors selectively regulate basal inhibitory transmission in the central amygdala: lack of ethanol interactions. J Pharmacol Exp Ther 328(1):284–293PubMedCrossRef Kang-Park M-H et al (2009) μ-Opioid receptors selectively regulate basal inhibitory transmission in the central amygdala: lack of ethanol interactions. J Pharmacol Exp Ther 328(1):284–293PubMedCrossRef
72.
go back to reference Finnegan TF, Chen S-R, Pan H-L (2005) Effect of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 312(2):441–448PubMedCrossRef Finnegan TF, Chen S-R, Pan H-L (2005) Effect of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 312(2):441–448PubMedCrossRef
73.
go back to reference Gabbott PL et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177PubMedCrossRef Gabbott PL et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177PubMedCrossRef
74.
go back to reference Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179PubMedCrossRef Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179PubMedCrossRef
75.
go back to reference Van den Oever MC et al (2008) Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 11(9):1053–1058PubMedCrossRef Van den Oever MC et al (2008) Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 11(9):1053–1058PubMedCrossRef
76.
go back to reference Sun W, Rebec GV (2006) Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci 26(30):8004–8008PubMedPubMedCentralCrossRef Sun W, Rebec GV (2006) Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci 26(30):8004–8008PubMedPubMedCentralCrossRef
77.
go back to reference Gipson CD, Kupchik YM, Kalivas PW (2014) Rapid, transient synaptic plasticity in addiction. Neuropharmacology 76:276–286PubMedCrossRef Gipson CD, Kupchik YM, Kalivas PW (2014) Rapid, transient synaptic plasticity in addiction. Neuropharmacology 76:276–286PubMedCrossRef
78.
go back to reference Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053PubMedPubMedCentralCrossRef Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053PubMedPubMedCentralCrossRef
79.
go back to reference Lu H et al (2010) Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 67(5):821–833PubMedPubMedCentralCrossRef Lu H et al (2010) Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 67(5):821–833PubMedPubMedCentralCrossRef
80.
go back to reference Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22(5):221–227PubMedCrossRef Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22(5):221–227PubMedCrossRef
81.
go back to reference Kogan JH, Nestler EJ, Aghajanian GK (1992) Elevated basal firing rates and enhanced responses to 8-Br-cAMP in locus coeruleus neurons in brain slices from opiate-dependent rats. Eur J Pharmacol 211(1):47–53PubMedCrossRef Kogan JH, Nestler EJ, Aghajanian GK (1992) Elevated basal firing rates and enhanced responses to 8-Br-cAMP in locus coeruleus neurons in brain slices from opiate-dependent rats. Eur J Pharmacol 211(1):47–53PubMedCrossRef
82.
go back to reference Dong Y et al (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9(4):475–477PubMedCrossRef Dong Y et al (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9(4):475–477PubMedCrossRef
84.
go back to reference Mazei-Robison MS et al (2011) Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72(6):977–990PubMedPubMedCentralCrossRef Mazei-Robison MS et al (2011) Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72(6):977–990PubMedPubMedCentralCrossRef
85.
go back to reference Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22(3):383–388PubMedCrossRef Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22(3):383–388PubMedCrossRef
86.
go back to reference Carlisle HJ, Kennedy MB (2005) Spine architecture and synaptic plasticity. Trends Neurosci 28(4):182–187PubMedCrossRef Carlisle HJ, Kennedy MB (2005) Spine architecture and synaptic plasticity. Trends Neurosci 28(4):182–187PubMedCrossRef
87.
go back to reference Grueter BA et al (2013) ∆ FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci 110(5):1923–1928PubMedPubMedCentralCrossRef Grueter BA et al (2013) FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci 110(5):1923–1928PubMedPubMedCentralCrossRef
88.
go back to reference Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:33–46PubMedCrossRef Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:33–46PubMedCrossRef
89.
90.
go back to reference Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10(8):561–572PubMedCrossRef Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10(8):561–572PubMedCrossRef
92.
go back to reference Robison A et al (2013) Behavioral and structural responses to chronic cocaine require a feed-forward loop involving? FosB and CaMKII in the nucleus accumbens shell. J Neurosci Robison A et al (2013) Behavioral and structural responses to chronic cocaine require a feed-forward loop involving? FosB and CaMKII in the nucleus accumbens shell. J Neurosci
93.
go back to reference Russo SJ et al (2007) IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 10(1):93–99PubMedCrossRef Russo SJ et al (2007) IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 10(1):93–99PubMedCrossRef
94.
go back to reference Graham DL et al (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10(8):1029–1037PubMedCrossRef Graham DL et al (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10(8):1029–1037PubMedCrossRef
95.
go back to reference Graham DL et al (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiat 65(8):696–701PubMedCrossRef Graham DL et al (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiat 65(8):696–701PubMedCrossRef
96.
97.
go back to reference Avidor-Reiss T et al (1996) Chronic opioid treatment induces adenylyl cyclase v superactivation involvement of Gβγ. J Biol Chem 271(35):21309–21315PubMedCrossRef Avidor-Reiss T et al (1996) Chronic opioid treatment induces adenylyl cyclase v superactivation involvement of Gβγ. J Biol Chem 271(35):21309–21315PubMedCrossRef
98.
go back to reference Nestler EJ, Tallman JF (1988) Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus. Mol Pharmacol 33(2):127–132PubMed Nestler EJ, Tallman JF (1988) Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus. Mol Pharmacol 33(2):127–132PubMed
99.
go back to reference Terwilliger RZ et al (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548(1–2):100–110PubMedCrossRef Terwilliger RZ et al (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548(1–2):100–110PubMedCrossRef
100.
go back to reference Haghparast A et al (2014) Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress. Cell Mol Neurobiol 34(2):277–288PubMedCrossRef Haghparast A et al (2014) Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress. Cell Mol Neurobiol 34(2):277–288PubMedCrossRef
101.
go back to reference Morón JA et al (2010) Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35(4):955–966PubMedCrossRef Morón JA et al (2010) Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35(4):955–966PubMedCrossRef
102.
go back to reference Chavez-Noriega LE, Stevens CF (1994) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J Neurosci 14(1):310–317PubMedPubMedCentralCrossRef Chavez-Noriega LE, Stevens CF (1994) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J Neurosci 14(1):310–317PubMedPubMedCentralCrossRef
103.
go back to reference Weisskopf MG et al (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265(5180):1878–1882PubMedCrossRef Weisskopf MG et al (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265(5180):1878–1882PubMedCrossRef
104.
go back to reference Shaw-Lutchman TZ et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22(9):3663–3672PubMedPubMedCentralCrossRef Shaw-Lutchman TZ et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22(9):3663–3672PubMedPubMedCentralCrossRef
105.
go back to reference Cao J-L et al (2010) Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Proc Natl Acad Sci 107(39):17011–17016PubMedPubMedCentralCrossRef Cao J-L et al (2010) Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Proc Natl Acad Sci 107(39):17011–17016PubMedPubMedCentralCrossRef
106.
go back to reference Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445PubMedCrossRef Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445PubMedCrossRef
107.
go back to reference Shaw-Lutchman TZ et al (2003) Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48(1):10–17PubMedCrossRef Shaw-Lutchman TZ et al (2003) Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48(1):10–17PubMedCrossRef
108.
109.
go back to reference Barrot M et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci 99(17):11435–11440PubMedPubMedCentralCrossRef Barrot M et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci 99(17):11435–11440PubMedPubMedCentralCrossRef
110.
go back to reference DiNieri JA et al (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29(6):1855–1859PubMedPubMedCentralCrossRef DiNieri JA et al (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29(6):1855–1859PubMedPubMedCentralCrossRef
111.
go back to reference Larson EB et al (2011) Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 31(45):16447–16457PubMedPubMedCentralCrossRef Larson EB et al (2011) Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 31(45):16447–16457PubMedPubMedCentralCrossRef
112.
113.
go back to reference Li Y-Q et al (2008) Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 28(49):13248–13257PubMedPubMedCentralCrossRef Li Y-Q et al (2008) Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 28(49):13248–13257PubMedPubMedCentralCrossRef
114.
go back to reference Baker DA et al (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6(7):743–749PubMedCrossRef Baker DA et al (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6(7):743–749PubMedCrossRef
115.
go back to reference LaRowe SD et al (2007) Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry 164(7):1115–1117PubMedCrossRef LaRowe SD et al (2007) Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry 164(7):1115–1117PubMedCrossRef
117.
go back to reference Solecki W et al (2009) Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration. Brain Res 1255:113–121PubMedCrossRef Solecki W et al (2009) Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration. Brain Res 1255:113–121PubMedCrossRef
118.
go back to reference Maher CE, Martin TJ, Childers SR (2005) Mechanisms of mu opioid receptor/G-protein desensitization in brain by chronic heroin administration. Life Sci 77(10):1140–1154PubMedCrossRef Maher CE, Martin TJ, Childers SR (2005) Mechanisms of mu opioid receptor/G-protein desensitization in brain by chronic heroin administration. Life Sci 77(10):1140–1154PubMedCrossRef
119.
go back to reference Sim-Selley LJ et al (2000) Chronic heroin self-administration desensitizes μ opioid receptor-activated G-proteins in specific regions of rat brain. J Neurosci 20(12):4555–4562PubMedPubMedCentralCrossRef Sim-Selley LJ et al (2000) Chronic heroin self-administration desensitizes μ opioid receptor-activated G-proteins in specific regions of rat brain. J Neurosci 20(12):4555–4562PubMedPubMedCentralCrossRef
120.
go back to reference Sim LJ et al (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S] GTPgammaS autoradiography in rat brain. J Neurosci 16(8):2684–2692PubMedPubMedCentralCrossRef Sim LJ et al (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S] GTPgammaS autoradiography in rat brain. J Neurosci 16(8):2684–2692PubMedPubMedCentralCrossRef
121.
go back to reference Kirschke C et al (2002) Effects of morphine withdrawal on μ-opioid receptor-stimulated guanylyl 5′-[γ-[35S] thio]-triphosphate autoradiography in rat brain. Eur J Pharmacol 446(1–3):43–51PubMedCrossRef Kirschke C et al (2002) Effects of morphine withdrawal on μ-opioid receptor-stimulated guanylyl 5′-[γ-[35S] thio]-triphosphate autoradiography in rat brain. Eur J Pharmacol 446(1–3):43–51PubMedCrossRef
122.
go back to reference Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506(2):263–287PubMedCrossRef Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506(2):263–287PubMedCrossRef
124.
go back to reference Drdla R et al (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325(5937):207–210PubMedCrossRef Drdla R et al (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325(5937):207–210PubMedCrossRef
125.
go back to reference Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374(13):1253–1263PubMedCrossRef Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374(13):1253–1263PubMedCrossRef
126.
go back to reference Vaccarino AL (1999) Tolerance to morphine analgesia: basic issues to consider. In: Pain Forum. Elsevier Vaccarino AL (1999) Tolerance to morphine analgesia: basic issues to consider. In: Pain Forum. Elsevier
127.
go back to reference Rothstein JD et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77PubMedCrossRef Rothstein JD et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77PubMedCrossRef
128.
go back to reference Bossert JM et al (2006) Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 31(10):2197–2209PubMedCrossRef Bossert JM et al (2006) Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 31(10):2197–2209PubMedCrossRef
129.
go back to reference Roberts-Wolfe DJ, Kalivas PW (2015) Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 14(6): 745–756 Roberts-Wolfe DJ, Kalivas PW (2015) Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 14(6): 745–756
130.
go back to reference Rogers J, Ghee S, See R (2008) The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 151(2):579–588PubMedCrossRef Rogers J, Ghee S, See R (2008) The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 151(2):579–588PubMedCrossRef
131.
132.
go back to reference Geoffroy H et al (2019) Morphine-Induced dendritic spine remodeling in rat nucleus accumbens is corticosterone dependent. Int J Neuropsychopharmacol 22(6):394–401PubMedPubMedCentralCrossRef Geoffroy H et al (2019) Morphine-Induced dendritic spine remodeling in rat nucleus accumbens is corticosterone dependent. Int J Neuropsychopharmacol 22(6):394–401PubMedPubMedCentralCrossRef
133.
go back to reference Van Gucht D et al (2010) Smoking behavior in context: where and when do people smoke? J Behav Ther Exp Psychiatry 41(2):172–177PubMedCrossRef Van Gucht D et al (2010) Smoking behavior in context: where and when do people smoke? J Behav Ther Exp Psychiatry 41(2):172–177PubMedCrossRef
134.
go back to reference Lang PJ (2005) International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report Lang PJ (2005) International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report
135.
go back to reference Volkow N et al (2006) Las señales de la cocaína y la dopamina en el cuerpo estriado dorsal: mecanismo del deseo en la adicción a la cocaína. J Neurosci 26:6583–6588PubMedPubMedCentralCrossRef Volkow N et al (2006) Las señales de la cocaína y la dopamina en el cuerpo estriado dorsal: mecanismo del deseo en la adicción a la cocaína. J Neurosci 26:6583–6588PubMedPubMedCentralCrossRef
136.
go back to reference David SP et al (2005) Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 58(6):488–494PubMedPubMedCentralCrossRef David SP et al (2005) Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 58(6):488–494PubMedPubMedCentralCrossRef
137.
go back to reference Grüsser SM et al (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175(3):296–302PubMedCrossRef Grüsser SM et al (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175(3):296–302PubMedCrossRef
138.
go back to reference Garavan H et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11):1789–1798PubMedCrossRef Garavan H et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11):1789–1798PubMedCrossRef
139.
go back to reference Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10(2):59–63PubMedCrossRef Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10(2):59–63PubMedCrossRef
Metadata
Title
Addiction-induced plasticity in underlying neural circuits
Authors
Masoumeh Kourosh-Arami
Alireza Komaki
Masoumeh Gholami
Publication date
01-03-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 3/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05778-y

Other articles of this Issue 3/2022

Neurological Sciences 3/2022 Go to the issue