Skip to main content
Top
Published in: Neurological Sciences 12/2020

01-12-2020 | Magnetoencephalography | Review Article

Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability—part II

Authors: Marina de Tommaso, Viviana Betti, Tommaso Bocci, Nadia Bolognini, Francesco Di Russo, Francesco Fattapposta, Raffaele Ferri, Sara Invitto, Giacomo Koch, Carlo Miniussi, Francesco Piccione, Aldo Ragazzoni, Ferdinando Sartucci, Simone Rossi, Massimiliano Valeriani

Published in: Neurological Sciences | Issue 12/2020

Login to get access

Abstract

This review focuses on new and/or less standardized event-related potentials methods, in order to improve their knowledge for future clinical applications. The olfactory event-related potentials (OERPs) assess the olfactory functions in time domain, with potential utility in anosmia and degenerative diseases. The transcranial magnetic stimulation-electroencephalography (TMS-EEG) could support the investigation of the intracerebral connections with very high temporal discrimination. Its application in the diagnosis of disorders of consciousness has achieved recent confirmation. Magnetoencephalography (MEG) and event-related fields (ERF) could improve spatial accuracy of scalp signals, with potential large application in pre-surgical study of epileptic patients. Although these techniques have methodological limits, such as high inter- and intraindividual variability and high costs, their diffusion among researchers and clinicians is hopeful, pending their standardization.
Literature
1.
go back to reference Kobal G, Hummel T (1994) Olfactory (chemosensory) event-related potentials. Toxicol Ind Health 10:587–596PubMed Kobal G, Hummel T (1994) Olfactory (chemosensory) event-related potentials. Toxicol Ind Health 10:587–596PubMed
2.
go back to reference Landis BN, Negoias S, Friedrich H (2016) Chemosensorisch evozierte Potenziale chemosensory event related potentials. Epileptologie 33:189–196 Landis BN, Negoias S, Friedrich H (2016) Chemosensorisch evozierte Potenziale chemosensory event related potentials. Epileptologie 33:189–196
3.
go back to reference Kobal G, Plattig KH (1978) Objective olfactometry: methodological annotations for recording olfactory EEG-responses from the awake human. Elektroenzephalogr Elektromyogr Verwandte Geb 9:135–145 Kobal G, Plattig KH (1978) Objective olfactometry: methodological annotations for recording olfactory EEG-responses from the awake human. Elektroenzephalogr Elektromyogr Verwandte Geb 9:135–145
8.
go back to reference Luck SJ (2005). An introduction to event-related potentials and their neural origins. MIT Press, Cambridge, Mass, London Luck SJ (2005). An introduction to event-related potentials and their neural origins. MIT Press, Cambridge, Mass, London
9.
go back to reference Murphy C, Morgan CD, Geisler MW, Wetter S, Covington JW, Madowitz MD (2000) Olfactory event-related potentials and aging: normative data. Int J Psychophysiol 36:133–145PubMed Murphy C, Morgan CD, Geisler MW, Wetter S, Covington JW, Madowitz MD (2000) Olfactory event-related potentials and aging: normative data. Int J Psychophysiol 36:133–145PubMed
11.
go back to reference Wang L (2002) The correlation between physiological and psychological responses to odour stimulation in human subjects. Clin Neurophysiol 113:542–551PubMed Wang L (2002) The correlation between physiological and psychological responses to odour stimulation in human subjects. Clin Neurophysiol 113:542–551PubMed
15.
go back to reference Geisler MW, Murphy C (2000) Event-related brain potentials to attended and ignored olfactory and trigeminal stimuli. Int J Psychophysiol 37:309–315PubMed Geisler MW, Murphy C (2000) Event-related brain potentials to attended and ignored olfactory and trigeminal stimuli. Int J Psychophysiol 37:309–315PubMed
17.
go back to reference Picton TW (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152PubMed Picton TW (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152PubMed
21.
go back to reference Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER (2001) Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg 127:497–503PubMed Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER (2001) Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg 127:497–503PubMed
25.
go back to reference Morgan CD, Murphy C (2002) Olfactory event-related potentials in Alzheimer’s disease. J Int Neuropsychol Soc 8:753–763PubMed Morgan CD, Murphy C (2002) Olfactory event-related potentials in Alzheimer’s disease. J Int Neuropsychol Soc 8:753–763PubMed
27.
go back to reference Lorig TS (1989) Human EEG and odor response. Prog Neurobiol 33:387–398PubMed Lorig TS (1989) Human EEG and odor response. Prog Neurobiol 33:387–398PubMed
28.
go back to reference Doty RL (2012) Smell and taste. In: Sinclair AJ, Morley JE, Vellas B (eds) Pathy’s principles and practice of geriatric medicine, Fifth edn. Wiley, p 1061–1072 Doty RL (2012) Smell and taste. In: Sinclair AJ, Morley JE, Vellas B (eds) Pathy’s principles and practice of geriatric medicine, Fifth edn. Wiley, p 1061–1072
29.
go back to reference Malaty J, Malaty IAC (2013) Smell and taste disorders in primary care. Am Fam Physician 88:852–859 Malaty J, Malaty IAC (2013) Smell and taste disorders in primary care. Am Fam Physician 88:852–859
38.
go back to reference Frasnelli J, Schuster B, Hummel T (2007) Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex 17:2268–2275PubMed Frasnelli J, Schuster B, Hummel T (2007) Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex 17:2268–2275PubMed
39.
go back to reference Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313PubMed Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313PubMed
41.
go back to reference Schriever VA, Góis-Eanes M, Schuster B, Huart C, Hummel T (2014) Olfactory event-related potentials in infants. J Pediatr 165:372–375.e2PubMed Schriever VA, Góis-Eanes M, Schuster B, Huart C, Hummel T (2014) Olfactory event-related potentials in infants. J Pediatr 165:372–375.e2PubMed
42.
go back to reference Brauchli P, Rüegg PB, Etzweiler F, Zeier H (1995) Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem Senses 20:505–515PubMed Brauchli P, Rüegg PB, Etzweiler F, Zeier H (1995) Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem Senses 20:505–515PubMed
44.
go back to reference Chaudhury D, Manella L, Arellanos A, Escanilla O, Cleland TA, Linster C (2010) Olfactory bulb habituation to odor stimuli. Behav Neurosci 124:490–499PubMedPubMedCentral Chaudhury D, Manella L, Arellanos A, Escanilla O, Cleland TA, Linster C (2010) Olfactory bulb habituation to odor stimuli. Behav Neurosci 124:490–499PubMedPubMedCentral
46.
go back to reference Frank RA, Rybalsky K, Brearton M, Mannea E (2011) Odor recognition memory as a function of odor-naming performance. Chem Senses 36:29–41PubMed Frank RA, Rybalsky K, Brearton M, Mannea E (2011) Odor recognition memory as a function of odor-naming performance. Chem Senses 36:29–41PubMed
49.
go back to reference Kobal G, Hummel T (1998) Olfactory and intranasal trigeminal event-related potentials in anosmic patients. Laryngoscope 108:1033–1035PubMed Kobal G, Hummel T (1998) Olfactory and intranasal trigeminal event-related potentials in anosmic patients. Laryngoscope 108:1033–1035PubMed
53.
go back to reference Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMed Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107PubMed
54.
go back to reference Ilmoniemi RJ, Kičić D (2010) Methodology for combined TMS and EEG. Brain Topogr 22(4):233–248PubMed Ilmoniemi RJ, Kičić D (2010) Methodology for combined TMS and EEG. Brain Topogr 22(4):233–248PubMed
55.
go back to reference Amassian VE, Cracco RQ (1987) Human cerebral cortical responses to contralateral transcranial stimulation. Neurosurgery 20(1):148–155PubMed Amassian VE, Cracco RQ (1987) Human cerebral cortical responses to contralateral transcranial stimulation. Neurosurgery 20(1):148–155PubMed
56.
go back to reference Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74:417–424PubMed Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74:417–424PubMed
57.
go back to reference Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540PubMed Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540PubMed
62.
go back to reference Pisoni A, Romero Lauro LJ, Vergallito A, Maddaluno O, Bolognini N (2018) Cortical dynamics underpinning the self-other distinction of touch: a TMS-EEG study. Neuroimage 178:475–484PubMed Pisoni A, Romero Lauro LJ, Vergallito A, Maddaluno O, Bolognini N (2018) Cortical dynamics underpinning the self-other distinction of touch: a TMS-EEG study. Neuroimage 178:475–484PubMed
63.
go back to reference Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, Pigorini A, G. Casali A, Trimarchi PD, Boly M, Gosseries O, Bodart O, Curto F, Landi C, Mariotti M, Devalle G, Laureys S, Tononi G, Massimini M (2016) Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol 80:718–729PubMedPubMedCentral Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, Pigorini A, G. Casali A, Trimarchi PD, Boly M, Gosseries O, Bodart O, Curto F, Landi C, Mariotti M, Devalle G, Laureys S, Tononi G, Massimini M (2016) Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol 80:718–729PubMedPubMedCentral
64.
go back to reference Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci 13:182–189PubMed Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci 13:182–189PubMed
67.
go back to reference Bonato C, Miniussi C, Rossini PM (2006) Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol 117:1699–1707PubMed Bonato C, Miniussi C, Rossini PM (2006) Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol 117:1699–1707PubMed
69.
go back to reference Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with imultaneous. EEG Clin Neurophysiol 110:1325–1328PubMed Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with imultaneous. EEG Clin Neurophysiol 110:1325–1328PubMed
70.
go back to reference Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R (2019) Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 12:4534–4577 Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R (2019) Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 12:4534–4577
71.
go back to reference Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232PubMed Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232PubMed
72.
go back to reference Premoli I, Castellanos N, Rivolta D, Belardinelli P, Bajo R, Zipser C, Espenhahn S, Heidegger T, Müller-Dahlhaus F, Ziemann U (2014) TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci 34:5603–5612PubMedPubMedCentral Premoli I, Castellanos N, Rivolta D, Belardinelli P, Bajo R, Zipser C, Espenhahn S, Heidegger T, Müller-Dahlhaus F, Ziemann U (2014) TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci 34:5603–5612PubMedPubMedCentral
74.
75.
go back to reference Salo VC, Ferrari PF, Fox NA (2019) The role of the motor system in action understanding and communication: evidence from human infants and non-human primates. Dev Psychobiol 61(3):390–401PubMed Salo VC, Ferrari PF, Fox NA (2019) The role of the motor system in action understanding and communication: evidence from human infants and non-human primates. Dev Psychobiol 61(3):390–401PubMed
76.
go back to reference Pisoni A, Mattavelli G, Papagno P, Rosanova M, Casali AG, Romero Lauro LJ (2018) Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex 28:1132–1140PubMed Pisoni A, Mattavelli G, Papagno P, Rosanova M, Casali AG, Romero Lauro LJ (2018) Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex 28:1132–1140PubMed
77.
go back to reference Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M (2018) Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 1(169):302–311. https://doi.org/10.1016/j.neuroimage.2017.12.048CrossRef Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M (2018) Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 1(169):302–311. https://​doi.​org/​10.​1016/​j.​neuroimage.​2017.​12.​048CrossRef
78.
go back to reference Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC et al (2019) Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol 76:170–178 Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC et al (2019) Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol 76:170–178
80.
go back to reference Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19PubMed Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19PubMed
82.
go back to reference Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, Daskalakis ZJ (2010) Reliability of long interval cortical inhibition in healthy human subjects: a TMSEEG study. J Neurophysiol 104:1339–1346PubMed Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, Daskalakis ZJ (2010) Reliability of long interval cortical inhibition in healthy human subjects: a TMSEEG study. J Neurophysiol 104:1339–1346PubMed
83.
go back to reference Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33:9725–9733PubMedPubMedCentral Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33:9725–9733PubMedPubMedCentral
84.
go back to reference Casula EP, Pellicciari MC, Picazio S, Caltagirone C, Koch G (2016) Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. Neuroimage 143:204–213PubMed Casula EP, Pellicciari MC, Picazio S, Caltagirone C, Koch G (2016) Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. Neuroimage 143:204–213PubMed
85.
go back to reference Ragazzoni A, Cincotta M, Giovannelli F, Cruse D, Young GB, Miniussi C, Rossi S (2017) Clinical neurophysiology of prolonged disorders of consciousness: from diagnostic stimulation to therapeutic neuromodulation. Clin Neurophysiol 128(9):1629–1646PubMed Ragazzoni A, Cincotta M, Giovannelli F, Cruse D, Young GB, Miniussi C, Rossi S (2017) Clinical neurophysiology of prolonged disorders of consciousness: from diagnostic stimulation to therapeutic neuromodulation. Clin Neurophysiol 128(9):1629–1646PubMed
86.
go back to reference Sun Y, Farzan F, Mulsant BH, Rajji TK, Fitzgerald PB, Barr MS, Downar J, Wong W, Blumberger DM, Daskalakis ZJ (2016) Indicators for remission of suicidal ideation following magnetic seizure therapy in patients with treatment-resistant depression. JAMA Psychiatry 73:337–345PubMed Sun Y, Farzan F, Mulsant BH, Rajji TK, Fitzgerald PB, Barr MS, Downar J, Wong W, Blumberger DM, Daskalakis ZJ (2016) Indicators for remission of suicidal ideation following magnetic seizure therapy in patients with treatment-resistant depression. JAMA Psychiatry 73:337–345PubMed
87.
go back to reference Casarotto S, Canali P, Rosanova M, Pigorini A, Fecchio M, Mariotti M, Lucca A, Colombo C, Benedetti F, Massimini M (2013) Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography. Brain Topogr 26(2):326–337. https://doi.org/10.1007/s10548-012-0256-8CrossRefPubMed Casarotto S, Canali P, Rosanova M, Pigorini A, Fecchio M, Mariotti M, Lucca A, Colombo C, Benedetti F, Massimini M (2013) Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography. Brain Topogr 26(2):326–337. https://​doi.​org/​10.​1007/​s10548-012-0256-8CrossRefPubMed
88.
go back to reference Pellicciari MC, Ponzo V, Caltagirone C, Koch G (2017) Restored asymmetry of prefrontal cortical oscillatory activity after bilateral theta burst stimulation treatment in a patient with major depressive disorder: a TMS-EEG study. Brain Stimul 10:147–149PubMed Pellicciari MC, Ponzo V, Caltagirone C, Koch G (2017) Restored asymmetry of prefrontal cortical oscillatory activity after bilateral theta burst stimulation treatment in a patient with major depressive disorder: a TMS-EEG study. Brain Stimul 10:147–149PubMed
89.
go back to reference Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, Sallustio F, Paolucci S, Caltagirone C, Koch G (2018) Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 175:365–378PubMed Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, Sallustio F, Paolucci S, Caltagirone C, Koch G (2018) Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 175:365–378PubMed
90.
go back to reference Bagattini C, Mutanen TP, Fracassi C, Manenti R, Cotelli M, Ilmoniemi RJ, Miniussi C, Bortoletto M (2019) Predicting Alzheimer’s disease severity by means of TMS-EEG coregistration. Neurobiol Aging 80:38–45PubMed Bagattini C, Mutanen TP, Fracassi C, Manenti R, Cotelli M, Ilmoniemi RJ, Miniussi C, Bortoletto M (2019) Predicting Alzheimer’s disease severity by means of TMS-EEG coregistration. Neurobiol Aging 80:38–45PubMed
91.
go back to reference Mutanen TP, Kukkonen M, Nieminen JO, Stenroos M, Sarvas J, Ilmoniemi RJ (2016) Recovering TMS-evoked EEG responses masked by muscle artifacts. Neuroimage 139:157–166PubMed Mutanen TP, Kukkonen M, Nieminen JO, Stenroos M, Sarvas J, Ilmoniemi RJ (2016) Recovering TMS-evoked EEG responses masked by muscle artifacts. Neuroimage 139:157–166PubMed
92.
go back to reference Mutanen TP, Metsomaa J, Liljander S, Ilmoniemi RJ (2018) Automatic and robust noise suppression in EEG and MEG: the SOUND algorithm. Neuroimage 166:135–151PubMed Mutanen TP, Metsomaa J, Liljander S, Ilmoniemi RJ (2018) Automatic and robust noise suppression in EEG and MEG: the SOUND algorithm. Neuroimage 166:135–151PubMed
93.
go back to reference Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR (2019) The non-transcranial TMS evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185:300–312PubMed Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR (2019) The non-transcranial TMS evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185:300–312PubMed
94.
go back to reference Belardinelli P, Biabani M, Blumberger DM, Bortoletto M, Casarotto S, David O, Desideri D, Etkin A, Ferrarelli F, Fitzgerald PB, Fornito A, Gordon PC, Gosseries O, Harquel S, Julkunen P, Keller CJ, Kimiskidis VK, Lioumis P (2019) Reproducibility in TMS-EEG studies: a call for data sharing, standard procedures and effective experimental control. Brain Stimul 12:787–790PubMed Belardinelli P, Biabani M, Blumberger DM, Bortoletto M, Casarotto S, David O, Desideri D, Etkin A, Ferrarelli F, Fitzgerald PB, Fornito A, Gordon PC, Gosseries O, Harquel S, Julkunen P, Keller CJ, Kimiskidis VK, Lioumis P (2019) Reproducibility in TMS-EEG studies: a call for data sharing, standard procedures and effective experimental control. Brain Stimul 12:787–790PubMed
97.
go back to reference Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy JG, Schomer DL (1990) MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 28(6):811–817PubMed Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy JG, Schomer DL (1990) MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 28(6):811–817PubMed
100.
go back to reference Parkkonen L (2010) Instrumentation and data preprocessing. In: Hansen C, Peter M, Kringelbach L, Salmelin R (eds) MEG: an introduction to methods. Oxford university press, New York, pp 24–64 Parkkonen L (2010) Instrumentation and data preprocessing. In: Hansen C, Peter M, Kringelbach L, Salmelin R (eds) MEG: an introduction to methods. Oxford university press, New York, pp 24–64
106.
go back to reference Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Näätänen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 30(5):537–540PubMed Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Näätänen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 30(5):537–540PubMed
109.
go back to reference Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41(2):103–146PubMed Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41(2):103–146PubMed
126.
go back to reference Pellegrino G, Maran M, Turco C, Weis L, Pino G, Di Piccione F, Arcara G (2018) Bilateral transcranial direct current stimulation reshapes resting-state brain networks: a magnetoencephalography assessment. Neural Plast 2018:2782804. https://doi.org/10.1155/2018/2782804 Pellegrino G, Maran M, Turco C, Weis L, Pino G, Di Piccione F, Arcara G (2018) Bilateral transcranial direct current stimulation reshapes resting-state brain networks: a magnetoencephalography assessment. Neural Plast 2018:2782804. https://​doi.​org/​10.​1155/​2018/​2782804
128.
go back to reference Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, Piccione F (2016) Magnetoencephalography in stroke recovery and rehabilitation. Front Neurol 7:35PubMedPubMedCentral Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, Piccione F (2016) Magnetoencephalography in stroke recovery and rehabilitation. Front Neurol 7:35PubMedPubMedCentral
Metadata
Title
Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability—part II
Authors
Marina de Tommaso
Viviana Betti
Tommaso Bocci
Nadia Bolognini
Francesco Di Russo
Francesco Fattapposta
Raffaele Ferri
Sara Invitto
Giacomo Koch
Carlo Miniussi
Francesco Piccione
Aldo Ragazzoni
Ferdinando Sartucci
Simone Rossi
Massimiliano Valeriani
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 12/2020
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04527-x

Other articles of this Issue 12/2020

Neurological Sciences 12/2020 Go to the issue