Skip to main content
Top
Published in: Neurological Sciences 6/2019

01-06-2019 | Transcranial Magnetic Stimulation | Original Article

The role of low-frequency rTMS in the superior parietal cortex during time estimation

Authors: Fernanda Manaia, Kaline Rocha, Victor Marinho, Francisco Magalhães, Thomaz Oliveira, Valécia Carvalho, Thalys Araújo, Carla Ayres, Daya Gupta, Bruna Velasques, Pedro Ribeiro, Mauricio Cagy, Victor Hugo Bastos, Silmar Teixeira

Published in: Neurological Sciences | Issue 6/2019

Login to get access

Abstract

The low-frequency repetitive transcranial magnetic stimulation (rTMS) application has been associated with changes in cognitive processes embedded during time perception tasks. Although several studies have investigated the influence of neuromodulation on time perception, the effect of the 1-Hz rTMS application on the superior parietal cortex is not clearly understood. This study analyzes the effect of the low-frequency rTMS on time estimation when applied in the parietal medial longitudinal fissure. For the proposed study, 20 subjects were randomly selected for a crossover study with two conditions (sham and 1 Hz). Our findings reveal that participant underestimate 1-s time interval and overestimate 4-s and 9-s time intervals after 1-Hz rTMS (p ≤ 0.05). We conclude that the 1-Hz rTMS in the parietal medial longitudinal fissure delays short interval and speed up long time intervals. This could be due to the effect of parietal inhibition on the attentional level and working memory functions during time estimation.
Literature
1.
go back to reference Teixeira S, Machado S, Paes F, Velasques B, Silva JG, Sanfim AL, Minc D, Anghinah R, Menegaldo LL, Salama M, Cagy M, Nardi AE, Pöppel E, Bao Y, Szelag E, Ribeiro P, Arias-Carrión O (2013) Time perception distortion in neuropsychiatric and neurological disorders. CNS Neurol Disord Drug Targets 12(5):567–582CrossRefPubMed Teixeira S, Machado S, Paes F, Velasques B, Silva JG, Sanfim AL, Minc D, Anghinah R, Menegaldo LL, Salama M, Cagy M, Nardi AE, Pöppel E, Bao Y, Szelag E, Ribeiro P, Arias-Carrión O (2013) Time perception distortion in neuropsychiatric and neurological disorders. CNS Neurol Disord Drug Targets 12(5):567–582CrossRefPubMed
2.
go back to reference Matthews WJ, Meck WH (2014) Time perception: the bad news and the good. WIREs Cogn Sci 5:429–446CrossRef Matthews WJ, Meck WH (2014) Time perception: the bad news and the good. WIREs Cogn Sci 5:429–446CrossRef
3.
go back to reference Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282CrossRefPubMed Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282CrossRefPubMed
4.
go back to reference Gupta DS (2014) Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol 5:816CrossRefPubMedPubMedCentral Gupta DS (2014) Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol 5:816CrossRefPubMedPubMedCentral
5.
go back to reference Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939CrossRefPubMedPubMedCentral Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939CrossRefPubMedPubMedCentral
6.
go back to reference Harrington DL, Zimbelman JL, Hinton SC, Rao SM (2010) Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex 20:1274–1285CrossRefPubMed Harrington DL, Zimbelman JL, Hinton SC, Rao SM (2010) Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex 20:1274–1285CrossRefPubMed
7.
go back to reference Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336CrossRefPubMed Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336CrossRefPubMed
9.
go back to reference Oliveri M, Koch G, Salerno S, Torriero S, LoGerfo (2009) Caltagirone C. Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage 46:1173–1179CrossRefPubMed Oliveri M, Koch G, Salerno S, Torriero S, LoGerfo (2009) Caltagirone C. Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage 46:1173–1179CrossRefPubMed
10.
go back to reference Vicario CM, Martino D, Koch G (2013) Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience 245:121–128CrossRefPubMed Vicario CM, Martino D, Koch G (2013) Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience 245:121–128CrossRefPubMed
11.
go back to reference Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355CrossRefPubMedPubMedCentral Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355CrossRefPubMedPubMedCentral
12.
go back to reference Zanto TP, Gazzaley A (2013) Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 17:602–603CrossRefPubMed Zanto TP, Gazzaley A (2013) Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 17:602–603CrossRefPubMed
13.
go back to reference Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 36(1):3–25CrossRefPubMed Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 36(1):3–25CrossRefPubMed
15.
go back to reference Jones CRG, Malone TJL, Dirnberger G, Edwards M, Jahanshahi M (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68:30–41CrossRefPubMed Jones CRG, Malone TJL, Dirnberger G, Edwards M, Jahanshahi M (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68:30–41CrossRefPubMed
16.
go back to reference Bueti D, Walsh V, Frith C, Rees G (2009) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20(2):204–214CrossRef Bueti D, Walsh V, Frith C, Rees G (2009) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20(2):204–214CrossRef
17.
18.
go back to reference Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 45(2):321–331CrossRefPubMed Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 45(2):321–331CrossRefPubMed
19.
go back to reference Macar F, Vidal F (2009) Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol 63(3):227–239CrossRefPubMed Macar F, Vidal F (2009) Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol 63(3):227–239CrossRefPubMed
20.
go back to reference Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986CrossRefPubMedPubMedCentral Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986CrossRefPubMedPubMedCentral
21.
go back to reference Gongora M, Bittencourt J, Teixeira S, Basile LF, Pompeu F, Droguett EL, Arias-Carrion O, Budde H, Cagy M, Velasques B, Nardi AE, Ribeiro P (2016) Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: the role of absolute beta power in the sensorimotor integration. Neurosci Lett 12(611):1–5CrossRef Gongora M, Bittencourt J, Teixeira S, Basile LF, Pompeu F, Droguett EL, Arias-Carrion O, Budde H, Cagy M, Velasques B, Nardi AE, Ribeiro P (2016) Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: the role of absolute beta power in the sensorimotor integration. Neurosci Lett 12(611):1–5CrossRef
22.
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9(1):97–113CrossRefPubMed
23.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686CrossRefPubMed Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686CrossRefPubMed
24.
go back to reference Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 14:217–223CrossRefPubMed Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 14:217–223CrossRefPubMed
25.
go back to reference Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88CrossRef Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88CrossRef
26.
go back to reference Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38:115–124CrossRefPubMed Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38:115–124CrossRefPubMed
27.
go back to reference Mioni G, Stablum F, Mcclintock SM, Grondin S (2014) Different methods for reproducing time, different results. Atten Percept Psychophysiol 76:675–681CrossRef Mioni G, Stablum F, Mcclintock SM, Grondin S (2014) Different methods for reproducing time, different results. Atten Percept Psychophysiol 76:675–681CrossRef
28.
go back to reference Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22(2):233–251CrossRefPubMedPubMedCentral Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22(2):233–251CrossRefPubMedPubMedCentral
29.
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety OF (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039CrossRefPubMedPubMedCentral Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety OF (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039CrossRefPubMedPubMedCentral
30.
go back to reference Sato A, Torii T, Nakahara Y, Iwahashi M, Itoh Y, Iramina K (2013) The impact of rTMS over the dorsolateral prefrontal cortex on cognitive processing. ConfProc IEEE Eng Med Biol Soc:1988–1991 Sato A, Torii T, Nakahara Y, Iwahashi M, Itoh Y, Iramina K (2013) The impact of rTMS over the dorsolateral prefrontal cortex on cognitive processing. ConfProc IEEE Eng Med Biol Soc:1988–1991
31.
go back to reference Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532CrossRefPubMed Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532CrossRefPubMed
32.
go back to reference Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16(2):95–99CrossRefPubMed Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16(2):95–99CrossRefPubMed
33.
go back to reference Kehrer S, Kraft A, Koch SP, Kathmann N, Irlbacher K, Brandt SA (2015) Timing of spatial priming within the fronto-parietal attention network: a TMS study. Neuropsychologia. 74:30–36CrossRefPubMed Kehrer S, Kraft A, Koch SP, Kathmann N, Irlbacher K, Brandt SA (2015) Timing of spatial priming within the fronto-parietal attention network: a TMS study. Neuropsychologia. 74:30–36CrossRefPubMed
34.
go back to reference Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Location- or feature-based targeting of peripheral attention. Neuroimage. 14(1 Pt 1):37–47CrossRefPubMed Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Location- or feature-based targeting of peripheral attention. Neuroimage. 14(1 Pt 1):37–47CrossRefPubMed
35.
go back to reference Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB (2010) Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci U S A 107(41):17751–17756CrossRefPubMedPubMedCentral Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB (2010) Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci U S A 107(41):17751–17756CrossRefPubMedPubMedCentral
37.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13CrossRefPubMed Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13CrossRefPubMed
39.
40.
go back to reference Lake JI, Meck WH (2013) Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia 51(2):284–292CrossRefPubMed Lake JI, Meck WH (2013) Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia 51(2):284–292CrossRefPubMed
41.
go back to reference Droit-Volet S, Gil S (2016) The emotional body and time perception. Cognit Emot 30(4):687–699CrossRef Droit-Volet S, Gil S (2016) The emotional body and time perception. Cognit Emot 30(4):687–699CrossRef
42.
go back to reference French RM, Addyman C, Mareschal D, Thomas E (2014) Unifying Prospective and Retrospective interval-time estimation: a fading-gaussian activation-based model of interval-timing. Procedia Soc Behav Sci 126(21):141–150CrossRef French RM, Addyman C, Mareschal D, Thomas E (2014) Unifying Prospective and Retrospective interval-time estimation: a fading-gaussian activation-based model of interval-timing. Procedia Soc Behav Sci 126(21):141–150CrossRef
43.
go back to reference Coull JT, Vidal F, Nazarian B et al (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508CrossRef Coull JT, Vidal F, Nazarian B et al (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508CrossRef
44.
45.
go back to reference Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372CrossRefPubMed Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372CrossRefPubMed
46.
go back to reference Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. AP&P 72(3):561–582 Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. AP&P 72(3):561–582
47.
go back to reference Droit-Volet S, Meck WH (2007) How emotions colour our perception of time. Trends Cogn Sci 11(12):504–513CrossRefPubMed Droit-Volet S, Meck WH (2007) How emotions colour our perception of time. Trends Cogn Sci 11(12):504–513CrossRefPubMed
48.
go back to reference Wittmann M (2009) The inner experience of time. Philos Trans R Soc B 364:1955–1967CrossRef Wittmann M (2009) The inner experience of time. Philos Trans R Soc B 364:1955–1967CrossRef
49.
go back to reference Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision of reward prediction in dopamine neurons. Nat Neurosci 11(8):966–973CrossRefPubMed Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision of reward prediction in dopamine neurons. Nat Neurosci 11(8):966–973CrossRefPubMed
50.
go back to reference Koch G, Oliveri M, Caltagirone C (2009) Neural networks engaged in milliseconds and seconds time processing: evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction. Philos Trans R Soc Lond Ser B Biol Sci 364:1907–1918CrossRef Koch G, Oliveri M, Caltagirone C (2009) Neural networks engaged in milliseconds and seconds time processing: evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction. Philos Trans R Soc Lond Ser B Biol Sci 364:1907–1918CrossRef
51.
go back to reference Carvalho FM, Chaim KT, Sanchez TA, Araujo DB (2016) Time-Perception Network and Default mode network are associated with temporal prediction in a periodic motion task. Front Hum Neurosci 10:268CrossRefPubMedPubMedCentral Carvalho FM, Chaim KT, Sanchez TA, Araujo DB (2016) Time-Perception Network and Default mode network are associated with temporal prediction in a periodic motion task. Front Hum Neurosci 10:268CrossRefPubMedPubMedCentral
52.
go back to reference Alonso-Valerdi LM, Sepulveda F, Ramírez-Mendoza RA (2015) Perception and Cognition of cues used in synchronous brain–computer interfaces modify electroencephalographic patterns of control tasks. Front Hum Neurosci 9:636CrossRefPubMedPubMedCentral Alonso-Valerdi LM, Sepulveda F, Ramírez-Mendoza RA (2015) Perception and Cognition of cues used in synchronous brain–computer interfaces modify electroencephalographic patterns of control tasks. Front Hum Neurosci 9:636CrossRefPubMedPubMedCentral
53.
go back to reference Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, Pellicano E (2016) Central tendency effects in time interval reproduction in autism. Sci Rep 6:28570CrossRefPubMedPubMedCentral Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, Pellicano E (2016) Central tendency effects in time interval reproduction in autism. Sci Rep 6:28570CrossRefPubMedPubMedCentral
55.
go back to reference Righi S, Galli L, Paganini M, Bertini L, Viggiano MP, Piacentini S (2016; Jan) Time perception impairment in early-to-moderate stages of Huntington’s disease is related to memory deficits. Neurol Sci 37(1):97–104CrossRefPubMed Righi S, Galli L, Paganini M, Bertini L, Viggiano MP, Piacentini S (2016; Jan) Time perception impairment in early-to-moderate stages of Huntington’s disease is related to memory deficits. Neurol Sci 37(1):97–104CrossRefPubMed
56.
go back to reference Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325CrossRef Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325CrossRef
57.
go back to reference Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1897–1905CrossRef Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1897–1905CrossRef
58.
go back to reference Gruber RP, Block RA (2013) The flow of time as a perceptual illusion. J Mind Behav 34:91–100 Gruber RP, Block RA (2013) The flow of time as a perceptual illusion. J Mind Behav 34:91–100
60.
go back to reference Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental time line. Neurosci Biobehav Rev 36(10):2257–2273CrossRefPubMed Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental time line. Neurosci Biobehav Rev 36(10):2257–2273CrossRefPubMed
61.
go back to reference Ogden RS, Moore D, Redfern L, McGlone F (2014) The effect of pain and the anticipation of pain on temporal perception: a role for attention and arousal. Cognit Emot 29(5):910–922CrossRef Ogden RS, Moore D, Redfern L, McGlone F (2014) The effect of pain and the anticipation of pain on temporal perception: a role for attention and arousal. Cognit Emot 29(5):910–922CrossRef
62.
go back to reference Albrecht DS, Kareken DA, Christian BT, Dzemidzic M, Yoder KK (2014) Cortical dopamine release during a behavioral response inhibition task. Synapse. 68(6):266–274CrossRefPubMedPubMedCentral Albrecht DS, Kareken DA, Christian BT, Dzemidzic M, Yoder KK (2014) Cortical dopamine release during a behavioral response inhibition task. Synapse. 68(6):266–274CrossRefPubMedPubMedCentral
63.
go back to reference Strafella AP, Ko JH, Monchi O (2006) Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. NeuroImage 31(4):1666–1672CrossRefPubMed Strafella AP, Ko JH, Monchi O (2006) Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. NeuroImage 31(4):1666–1672CrossRefPubMed
64.
go back to reference Treister R, Lang M, Klein MM, Oaklander AL (2013) Non-invasive transcranial magnetic stimulation (TMS) of the motor cortex for neuropathic pain—at the tipping point? Rambam Maimonides Med J 4(4):e0023CrossRefPubMedPubMedCentral Treister R, Lang M, Klein MM, Oaklander AL (2013) Non-invasive transcranial magnetic stimulation (TMS) of the motor cortex for neuropathic pain—at the tipping point? Rambam Maimonides Med J 4(4):e0023CrossRefPubMedPubMedCentral
Metadata
Title
The role of low-frequency rTMS in the superior parietal cortex during time estimation
Authors
Fernanda Manaia
Kaline Rocha
Victor Marinho
Francisco Magalhães
Thomaz Oliveira
Valécia Carvalho
Thalys Araújo
Carla Ayres
Daya Gupta
Bruna Velasques
Pedro Ribeiro
Mauricio Cagy
Victor Hugo Bastos
Silmar Teixeira
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 6/2019
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-019-03820-8

Other articles of this Issue 6/2019

Neurological Sciences 6/2019 Go to the issue