Skip to main content
Top
Published in: Journal of Artificial Organs 1/2019

01-03-2019 | Original Article

Minimal-flow ECCO2R in patients needing CRRT does not facilitate lung-protective ventilation

Authors: Onnen Moerer, Lars-Olav Harnisch, Jürgen Barwing, Daniel Heise, Jan Florian Heuer, Michael Quintel

Published in: Journal of Artificial Organs | Issue 1/2019

Login to get access

Abstract

Extracorporeal CO2 removal (ECCO2R) is intended to facilitate lung protective ventilation in patients with hypercarbia. The combination of continuous renal replacement therapy (CRRT) and minimal-flow ECCO2R offers a promising concept for patients in need of both. We hypothecated that this system is able to remove enough CO2 to facilitate lung protective ventilation in mechanically ventilated patients. In 11 ventilated patients with acute renal failure who received either pre- or postdilution CRRT, minimal-flow ECCO2R was added to the circuit. During 6 h of combined therapy, CO2 removal and its effect on facilitation of lung-protective mechanical ventilation were assessed. Ventilatory settings were kept in assisted or pressure-controlled mode allowing spontaneous breathing. With minimal-flow ECCO2R significant decreases in minute ventilation, tidal volume and paCO2 were found after one and three but not after 6 h of therapy. Nevertheless, no significant reduction in applied force was found at any time during combined therapy. CO2 removal was 20.73 ml CO2/min and comparable between pre- and postdilution CRRT. Minimal-flow ECCO2R in combination with CRRT is sufficient to reduce surrogates for lung-protective mechanical ventilation but was not sufficient to significantly reduce force applied to the lung. Causative might be the absolute amount of CO2 removal of only about 10% of resting CO2 production in an adult as we found. The benefit of applying minimal flow ECCO2R in an uncontrolled setting of mechanical ventilation might be limited.
Appendix
Available only for authorised users
Literature
1.
go back to reference Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
2.
go back to reference Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16:372–7.CrossRefPubMed Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16:372–7.CrossRefPubMed
3.
go back to reference Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Resp Crit Care Med. 2007;175:160–6.CrossRefPubMed Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Resp Crit Care Med. 2007;175:160–6.CrossRefPubMed
4.
go back to reference Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med. 2016;42:663–73.CrossRefPubMed Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med. 2016;42:663–73.CrossRefPubMed
5.
go back to reference Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J, et al. Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 2013;39:847–56.CrossRefPubMedPubMedCentral Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J, et al. Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 2013;39:847–56.CrossRefPubMedPubMedCentral
6.
go back to reference Guldner A, Kiss T, Bluth T, Uhlig C, Braune A, Carvalho N, et al. Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome. Anesthesiology. 2015;122:631–46.CrossRefPubMed Guldner A, Kiss T, Bluth T, Uhlig C, Braune A, Carvalho N, et al. Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome. Anesthesiology. 2015;122:631–46.CrossRefPubMed
7.
go back to reference Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.CrossRefPubMed Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.CrossRefPubMed
8.
go back to reference Horie S, Ansari B, Masterson C, Devaney J, Scully M, O’Toole D, et al. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-kappaB pathway. Intensive Care Med Exp. 2016;4:8.CrossRefPubMedPubMedCentral Horie S, Ansari B, Masterson C, Devaney J, Scully M, O’Toole D, et al. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-kappaB pathway. Intensive Care Med Exp. 2016;4:8.CrossRefPubMedPubMedCentral
9.
go back to reference Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Melot C, et al. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Resp Crit Care Med. 2000;162:209–15.CrossRefPubMed Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Melot C, et al. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Resp Crit Care Med. 2000;162:209–15.CrossRefPubMed
10.
go back to reference Crystal GJ. Carbon dioxide and the heart: physiology and clinical implications. Anesth Analg. 2015;121:610–23.CrossRefPubMed Crystal GJ. Carbon dioxide and the heart: physiology and clinical implications. Anesth Analg. 2015;121:610–23.CrossRefPubMed
11.
go back to reference Moerer O, Quintel M. Protective and ultra-protective ventilation: using pumpless interventional lung assist (iLA). Min Anestesiol. 2011;77:537–44. Moerer O, Quintel M. Protective and ultra-protective ventilation: using pumpless interventional lung assist (iLA). Min Anestesiol. 2011;77:537–44.
12.
go back to reference Terragni P, Ranieri VM, Brazzi L. Novel approaches to minimize ventilator-induced lung injury. Curr Opin Crit Care. 2015;21:20–5.CrossRefPubMed Terragni P, Ranieri VM, Brazzi L. Novel approaches to minimize ventilator-induced lung injury. Curr Opin Crit Care. 2015;21:20–5.CrossRefPubMed
13.
go back to reference Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–35.CrossRefPubMed Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–35.CrossRefPubMed
14.
go back to reference Hill JD, O’Brien TG, Murray JJ, Dontigny L, Bramson ML, Osborn JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286:629–34.CrossRefPubMed Hill JD, O’Brien TG, Murray JJ, Dontigny L, Bramson ML, Osborn JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286:629–34.CrossRefPubMed
15.
go back to reference Curley GF. The goldilocks principle, carbon dioxide, and acute respiratory distress syndrome: too much, too little, or just. Right? Anesthesiology. 2016;124:532–4.CrossRefPubMed Curley GF. The goldilocks principle, carbon dioxide, and acute respiratory distress syndrome: too much, too little, or just. Right? Anesthesiology. 2016;124:532–4.CrossRefPubMed
16.
17.
go back to reference Vincent JL. Acute kidney injury, acute lung injury and septic shock: how does mortality compare? Contrib Nephrol. 2011;174:71–7.CrossRefPubMed Vincent JL. Acute kidney injury, acute lung injury and septic shock: how does mortality compare? Contrib Nephrol. 2011;174:71–7.CrossRefPubMed
18.
go back to reference Bagshaw SM. Epidemiology of renal recovery after acute renal failure. Curr Opin Crit Care. 2006;12:544–50.PubMed Bagshaw SM. Epidemiology of renal recovery after acute renal failure. Curr Opin Crit Care. 2006;12:544–50.PubMed
19.
go back to reference Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39:1382–7.CrossRefPubMed Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39:1382–7.CrossRefPubMed
20.
go back to reference Cardenas VJ Jr, Miller L, Lynch JE, Anderson MJ, Zwischenberger JB. Percutaneous venovenous CO2 removal with regional anticoagulation in an ovine model. ASAIO J (Am Soc Artif Intern Organs 1992). 2006;52:467–70. Cardenas VJ Jr, Miller L, Lynch JE, Anderson MJ, Zwischenberger JB. Percutaneous venovenous CO2 removal with regional anticoagulation in an ovine model. ASAIO J (Am Soc Artif Intern Organs 1992). 2006;52:467–70.
21.
go back to reference Gattinoni L, Agostoni A, Pesenti A, Pelizzola A, Rossi GP, Langer M, et al. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet. 1980;2:292–4.CrossRefPubMed Gattinoni L, Agostoni A, Pesenti A, Pelizzola A, Rossi GP, Langer M, et al. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet. 1980;2:292–4.CrossRefPubMed
22.
go back to reference Gille JP, Bauer P, Bollaert PE, Tousseul B, Kachani-Mansour R, Munsch L. CO2 removal with hemodialysis and control of plasma oncotic pressure. ASAIO Trans/Am Soc Artif Intern Organs. 1989;35:654–7.CrossRef Gille JP, Bauer P, Bollaert PE, Tousseul B, Kachani-Mansour R, Munsch L. CO2 removal with hemodialysis and control of plasma oncotic pressure. ASAIO Trans/Am Soc Artif Intern Organs. 1989;35:654–7.CrossRef
23.
go back to reference Habashi NM, Borg UR, Reynolds HN. Low blood flow extracorporeal carbon dioxide removal (ECCO2R): a review of the concept and a case report. Intensive Care Med. 1995;21:594–7.CrossRefPubMed Habashi NM, Borg UR, Reynolds HN. Low blood flow extracorporeal carbon dioxide removal (ECCO2R): a review of the concept and a case report. Intensive Care Med. 1995;21:594–7.CrossRefPubMed
24.
go back to reference Isobe J, Mizuno H, Matsunobe S, Shimizu Y, Ikada Y, Kishida A. A new type of low blood flow ECCO2R using a hemodialysis system in apneic states. ASAIO Trans/Am Soc Artif Intern Organs. 1989;35:638–9.CrossRef Isobe J, Mizuno H, Matsunobe S, Shimizu Y, Ikada Y, Kishida A. A new type of low blood flow ECCO2R using a hemodialysis system in apneic states. ASAIO Trans/Am Soc Artif Intern Organs. 1989;35:638–9.CrossRef
25.
go back to reference Mancini P, Whittlesey GC, Song JY, Salley SO, Klein MD. CO2 removal for ventilatory support: a comparison of dialysis with and without carbonic anhydrase to a hollow fiber lung. ASAIO Trans/Am Soc Artif Intern Organs. 1990;36:M675-8. Mancini P, Whittlesey GC, Song JY, Salley SO, Klein MD. CO2 removal for ventilatory support: a comparison of dialysis with and without carbonic anhydrase to a hollow fiber lung. ASAIO Trans/Am Soc Artif Intern Organs. 1990;36:M675-8.
26.
go back to reference Matsunobe S, Isobe J, Mizuno H, Shimizu Y. Extracorporeal CO2 removal by hemodialysis in patients with chronic respiratory failure. ASAIO Trans/Am Soc Artif Intern Organs. 1987;33:441–5. Matsunobe S, Isobe J, Mizuno H, Shimizu Y. Extracorporeal CO2 removal by hemodialysis in patients with chronic respiratory failure. ASAIO Trans/Am Soc Artif Intern Organs. 1987;33:441–5.
27.
go back to reference Morris JL, Rosen DA, Calvert KS, Gustafson RA, Steelman RJ, Rosen KR, et al. Extracorporeal CO2 removal in a child with a single ventricle by the addition of an oxygenator to a dialysis circuit. Pediatr Crit Care Med. 2003;4:104–6.CrossRefPubMed Morris JL, Rosen DA, Calvert KS, Gustafson RA, Steelman RJ, Rosen KR, et al. Extracorporeal CO2 removal in a child with a single ventricle by the addition of an oxygenator to a dialysis circuit. Pediatr Crit Care Med. 2003;4:104–6.CrossRefPubMed
28.
go back to reference Quintard JM, Barbot O, Thevenot F, de Matteis O, Benayoun L, Leibinger F. Partial extracorporeal carbon dioxide removal using a standard continuous renal replacement therapy device: a preliminary study. ASAIO J (Am Soc Artif Intern Organs 1992). 2014;60:564–9. Quintard JM, Barbot O, Thevenot F, de Matteis O, Benayoun L, Leibinger F. Partial extracorporeal carbon dioxide removal using a standard continuous renal replacement therapy device: a preliminary study. ASAIO J (Am Soc Artif Intern Organs 1992). 2014;60:564–9.
29.
go back to reference Svitek RG, Federspiel WJ. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators. Ann Biomed Eng. 2008;36:992–1003.CrossRefPubMed Svitek RG, Federspiel WJ. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators. Ann Biomed Eng. 2008;36:992–1003.CrossRefPubMed
30.
go back to reference Zanella A, Patroniti N, Isgro S, Albertini M, Costanzi M, Pirrone F, et al. Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med. 2009;35:1484–7.CrossRefPubMed Zanella A, Patroniti N, Isgro S, Albertini M, Costanzi M, Pirrone F, et al. Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med. 2009;35:1484–7.CrossRefPubMed
31.
go back to reference Zanella A, Mangili P, Giani M, Redaelli S, Scaravilli V, Castagna L, et al. Extracorporeal carbon dioxide removal through ventilation of acidified dialysate: an experimental study. J Heart Lung Transpl. 2014;33:536–41.CrossRef Zanella A, Mangili P, Giani M, Redaelli S, Scaravilli V, Castagna L, et al. Extracorporeal carbon dioxide removal through ventilation of acidified dialysate: an experimental study. J Heart Lung Transpl. 2014;33:536–41.CrossRef
32.
go back to reference Zanella A, Castagna L, Salerno D, Scaravilli V, Abd El Aziz El Sayed Deab S, Magni F, et al. Respiratory electrodialysis. a novel, highly efficient extracorporeal CO2 removal technique. Am J Resp Crit Care Med. 2015;192:719–26.CrossRefPubMed Zanella A, Castagna L, Salerno D, Scaravilli V, Abd El Aziz El Sayed Deab S, Magni F, et al. Respiratory electrodialysis. a novel, highly efficient extracorporeal CO2 removal technique. Am J Resp Crit Care Med. 2015;192:719–26.CrossRefPubMed
33.
go back to reference Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1988;65:473–7.CrossRefPubMed Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1988;65:473–7.CrossRefPubMed
Metadata
Title
Minimal-flow ECCO2R in patients needing CRRT does not facilitate lung-protective ventilation
Authors
Onnen Moerer
Lars-Olav Harnisch
Jürgen Barwing
Daniel Heise
Jan Florian Heuer
Michael Quintel
Publication date
01-03-2019
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 1/2019
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-018-1068-8

Other articles of this Issue 1/2019

Journal of Artificial Organs 1/2019 Go to the issue