Skip to main content
Top
Published in: Brain Tumor Pathology 2/2014

01-04-2014 | Original Article

Pathological features of highly invasive glioma stem cells in a mouse xenograft model

Authors: Hirokazu Sadahiro, Koichi Yoshikawa, Makoto Ideguchi, Koji Kajiwara, Aya Ishii, Eiji Ikeda, Yuji Owada, Yuki Yasumoto, Michiyasu Suzuki

Published in: Brain Tumor Pathology | Issue 2/2014

Login to get access

Abstract

Glioma stem cells (GSCs) may be a source of tumor progression and recurrence after multimodal therapy, because of their high invasive potential. The purpose of this study was to compare the invasive and migratory properties of GSCs and non-GSCs and examine the distribution of these cells in a mouse xenograft model. Three GSC lines, G144, Y02, and Y10, cultured from human glioblastoma, were used in the study. Matrigel-invasion assays of infiltration and time-lapse studies of migration were performed for comparison of the GSCs with the corresponding differentiated non-GSC lines. Cells were also transplanted into mouse brain and the different distribution of GSCs and non-GSCs was examined in the tumor xenograft model. All 3 GSC lines had greater invasion and migration ability than the corresponding non-GSCs. In vivo, GSCs infiltrated more widely than non-GSCs and reached the contralateral hemisphere via the corpus callosum in the early stage of tumorigenesis. GSCs also primarily penetrated the subventricular zone (SVZ). GSCs have high invasive potential and tend to be present in the outer tumor bulk and infiltrate the contralateral hemisphere via the corpus callosum, in addition to penetrating the SVZ.
Literature
1.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
2.
go back to reference Molina JR, Hayashi Y, Stephens C, Georgescu MM (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12:453–463PubMedCentralPubMed Molina JR, Hayashi Y, Stephens C, Georgescu MM (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12:453–463PubMedCentralPubMed
3.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed
4.
go back to reference Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK (2012) Glioma stem cell invasion through regulation of the interconnected ERK, integrin alpha6 and N-cadherin signaling pathway. Cell Signal 24:2076–2084PubMedCrossRef Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK (2012) Glioma stem cell invasion through regulation of the interconnected ERK, integrin alpha6 and N-cadherin signaling pathway. Cell Signal 24:2076–2084PubMedCrossRef
5.
go back to reference Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRef Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRef
6.
go back to reference Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580PubMedCrossRef Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580PubMedCrossRef
7.
go back to reference Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT, Tang C (2008) Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg 109:856–866PubMedCrossRef Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT, Tang C (2008) Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg 109:856–866PubMedCrossRef
8.
go back to reference Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17:103–112PubMedCentralPubMedCrossRef Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17:103–112PubMedCentralPubMedCrossRef
9.
go back to reference Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMedCrossRef Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMedCrossRef
10.
go back to reference Hide T, Takezaki T, Nakamura H, Kuratsu J, Kondo T (2008) Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol 25:67–72PubMedCrossRef Hide T, Takezaki T, Nakamura H, Kuratsu J, Kondo T (2008) Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol 25:67–72PubMedCrossRef
11.
go back to reference Dong J, Huang Q (2011) Targeting glioma stem cells: enough to terminate gliomagenesis? Chin Med J (Engl) 124:2756–2763 Dong J, Huang Q (2011) Targeting glioma stem cells: enough to terminate gliomagenesis? Chin Med J (Engl) 124:2756–2763
12.
go back to reference Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1:638–655PubMedCrossRef Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1:638–655PubMedCrossRef
13.
go back to reference Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, Yano H, Tanaka J, Ohnishi T (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37:1121–1131PubMed Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, Yano H, Tanaka J, Ohnishi T (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37:1121–1131PubMed
14.
go back to reference Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN, Bao S (2011) Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun 406:643–648PubMedCentralPubMedCrossRef Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN, Bao S (2011) Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun 406:643–648PubMedCentralPubMedCrossRef
15.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef
16.
go back to reference Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452PubMedCrossRef Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452PubMedCrossRef
17.
go back to reference Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, Harper L, Austin R, Nieuwenhuis E, Clarke ID, Hui CC, Dirks PB (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682–4690PubMedCrossRef Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, Harper L, Austin R, Nieuwenhuis E, Clarke ID, Hui CC, Dirks PB (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682–4690PubMedCrossRef
19.
go back to reference Dimov I, Tasic-Dimov D, Conic I, Stefanovic V (2011) Glioblastoma multiforme stem cells. ScientificWorldJournal 11:930–958PubMedCrossRef Dimov I, Tasic-Dimov D, Conic I, Stefanovic V (2011) Glioblastoma multiforme stem cells. ScientificWorldJournal 11:930–958PubMedCrossRef
20.
go back to reference Fatoo A, Nanaszko MJ, Allen BB, Mok CL, Bukanova EN, Beyene R, Moliterno JA, Boockvar JA (2011) Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol 103:397–408PubMedCrossRef Fatoo A, Nanaszko MJ, Allen BB, Mok CL, Bukanova EN, Beyene R, Moliterno JA, Boockvar JA (2011) Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol 103:397–408PubMedCrossRef
21.
go back to reference Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY, Rich JN (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS ONE 6:e24807PubMedCentralPubMedCrossRef Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY, Rich JN (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS ONE 6:e24807PubMedCentralPubMedCrossRef
22.
go back to reference Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375PubMedCrossRef Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375PubMedCrossRef
23.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef
24.
go back to reference Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288PubMedCrossRef Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288PubMedCrossRef
25.
go back to reference Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRef Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRef
26.
go back to reference Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedCentralPubMedCrossRef Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedCentralPubMedCrossRef
27.
go back to reference Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995PubMedCrossRef Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995PubMedCrossRef
28.
go back to reference Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102:1958–1966PubMedCrossRef Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102:1958–1966PubMedCrossRef
29.
go back to reference Munoz DM, Guha A (2011) Mouse models to interrogate the implications of the differentiation status in the ontogeny of gliomas. Oncotarget 2:590–598PubMedCentralPubMed Munoz DM, Guha A (2011) Mouse models to interrogate the implications of the differentiation status in the ontogeny of gliomas. Oncotarget 2:590–598PubMedCentralPubMed
Metadata
Title
Pathological features of highly invasive glioma stem cells in a mouse xenograft model
Authors
Hirokazu Sadahiro
Koichi Yoshikawa
Makoto Ideguchi
Koji Kajiwara
Aya Ishii
Eiji Ikeda
Yuji Owada
Yuki Yasumoto
Michiyasu Suzuki
Publication date
01-04-2014
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 2/2014
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-013-0149-x

Other articles of this Issue 2/2014

Brain Tumor Pathology 2/2014 Go to the issue