Skip to main content
Top
Published in: Clinical Oral Investigations 9/2014

01-12-2014 | Original Article

Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria

Authors: Marco C. Bottino, Rodrigo A. Arthur, R. Aaron Waeiss, Krzysztof Kamocki, Karen S. Gregson, Richard L. Gregory

Published in: Clinical Oral Investigations | Issue 9/2014

Login to get access

Abstract

Objectives

The purposes of this study were to fabricate biodegradable polydioxanone (PDS II®) electrospun periodontal drug delivery systems (hereafter referred to as matrices) containing either metronidazole (MET) or ciprofloxacin (CIP) and to investigate the effects of antibiotic incorporation on both periodontopathogens and commensal oral bacteria.

Materials and methods

Fibrous matrices were processed from PDS polymer solution by electrospinning. Antibiotic-containing PDS solutions were prepared to obtain four distinct groups: 5 wt.% MET, 25 wt.% MET, 5 wt.% CIP, and 25 wt.% CIP. Pure PDS was used as a control. High-performance liquid chromatography (HPLC) was done to evaluate MET and CIP release. Dual-species biofilms formed by Lactobacillus casei (Lc) and Streptococcus salivarius (Ss) were grown on the surface of all electrospun matrices. After 4 days of biofilm growth, the viability of bacteria on biofilms was assessed. Additionally, antimicrobial properties were evaluated against periodontopathogens Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa) using agar diffusion assay.

Results

A three-dimensional interconnected porous network was observed in the different fabricated matrices. Pure PDS showed the highest fiber diameter mean (1,158 ± 402 nm) followed in a descending order by groups 5 wt.% MET (1,108 ± 383 nm), 25 wt.% MET (944 ± 392 nm), 5 wt.% CIP (871 ± 309 nm), and 25 wt.% CIP (765 ± 288 nm). HPLC demonstrated that groups containing higher amounts (25 wt.%) of incorporated drugs released more over time, while those with lower levels (5 wt.%) the least. No inhibitory effect of the tested antibiotics was detected on biofilm formation by the tested commensal oral bacteria. Meanwhile, CIP-containing matrices inhibited growth of Fn and Aa.

Conclusion

CIP-containing matrices led to a significant inhibition of periodontopathogens without negatively impairing the growth of periodontal beneficial bacteria.

Clinical relevance

Based on the proven in vitro inhibition of periodontitis-related bacteria, future in vivo research using relevant animal models is needed to confirm the effectiveness of these drug delivery systems.
Literature
1.
go back to reference Walker CB, Karpinia K (2002) Rationale for use of antibiotics in periodontics. J Periodontol 73:1188–1196PubMedCrossRef Walker CB, Karpinia K (2002) Rationale for use of antibiotics in periodontics. J Periodontol 73:1188–1196PubMedCrossRef
2.
go back to reference Xajigeorgiou C, Sakellari D, Slini T, Baka A, Konstantinidis A (2006) Clinical and microbiological effects of different antimicrobials on generalized aggressive periodontitis. J Clin Periodontol 33:254–264PubMedCrossRef Xajigeorgiou C, Sakellari D, Slini T, Baka A, Konstantinidis A (2006) Clinical and microbiological effects of different antimicrobials on generalized aggressive periodontitis. J Clin Periodontol 33:254–264PubMedCrossRef
3.
go back to reference Serrano C, Torres N, Valdivieso C, Castano C, Barrera M, Cabrales A (2009) Antibiotic resistance of periodontal pathogens obtained from frequent antibiotics users. Acta Odontol Latinoam 22:99–104PubMed Serrano C, Torres N, Valdivieso C, Castano C, Barrera M, Cabrales A (2009) Antibiotic resistance of periodontal pathogens obtained from frequent antibiotics users. Acta Odontol Latinoam 22:99–104PubMed
4.
go back to reference Ardila CM, Granada MI, Guzman IC (2010) Antibiotic resistance of subgingival species in chronic periodontitis patients. J Periodontol Res 45:557–563 Ardila CM, Granada MI, Guzman IC (2010) Antibiotic resistance of subgingival species in chronic periodontitis patients. J Periodontol Res 45:557–563
5.
go back to reference Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988PubMedCrossRef Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988PubMedCrossRef
6.
go back to reference Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114PubMedCrossRef Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114PubMedCrossRef
7.
go back to reference Koll-Klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L, Mikelsaar M (2005) Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 20:354–361PubMedCrossRef Koll-Klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L, Mikelsaar M (2005) Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 20:354–361PubMedCrossRef
8.
go back to reference van Hoogmoed CG, Geertsema-doornbusch GI, Teughels W, Quirynen M, Busscher HJ, van der Mei HC (2008) Reduction in periodontal pathogens adhesion by antagonistic strains. Oral Microbiol Immunol 23:43–48PubMedCrossRef van Hoogmoed CG, Geertsema-doornbusch GI, Teughels W, Quirynen M, Busscher HJ, van der Mei HC (2008) Reduction in periodontal pathogens adhesion by antagonistic strains. Oral Microbiol Immunol 23:43–48PubMedCrossRef
9.
go back to reference Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28:703–721PubMedCrossRef Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28:703–721PubMedCrossRef
10.
go back to reference Bottino MC, Thomas V, Janowski GM (2011) A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater 7:216–224PubMedCrossRef Bottino MC, Thomas V, Janowski GM (2011) A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater 7:216–224PubMedCrossRef
11.
go back to reference Rodrigues RMJ, Goncalves C, Souto R, Feres-Filho EJ, Uzeda M, Colombo APV (2004) Antibiotics resistance profile of the subgingival microbiota following systemic or local tetracycline therapy. J Clin Periodontol 31:420–427PubMedCrossRef Rodrigues RMJ, Goncalves C, Souto R, Feres-Filho EJ, Uzeda M, Colombo APV (2004) Antibiotics resistance profile of the subgingival microbiota following systemic or local tetracycline therapy. J Clin Periodontol 31:420–427PubMedCrossRef
12.
go back to reference Killoy WJ (1999) Local delivery of antimicrobials: a new era in the treatment of adult periodontitis. Compend Contin Educ Dent 20:13–18PubMed Killoy WJ (1999) Local delivery of antimicrobials: a new era in the treatment of adult periodontitis. Compend Contin Educ Dent 20:13–18PubMed
13.
14.
go back to reference Rams TE, Slots J (1996) Local delivery of antimicrobial agents in the periodontal pocket. Periodontol 10:139–159, 2000CrossRef Rams TE, Slots J (1996) Local delivery of antimicrobial agents in the periodontal pocket. Periodontol 10:139–159, 2000CrossRef
15.
go back to reference Thomas V, Zhang X, Vohra YK (2009) A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends. Biotechnol Bioeng 104:1025–1033PubMedCrossRef Thomas V, Zhang X, Vohra YK (2009) A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends. Biotechnol Bioeng 104:1025–1033PubMedCrossRef
16.
go back to reference Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629PubMedCrossRef Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629PubMedCrossRef
17.
go back to reference Guggenheim B, Giertsen E, Schupbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370PubMedCrossRef Guggenheim B, Giertsen E, Schupbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370PubMedCrossRef
18.
go back to reference Stookey GK, Stahlman DB (1976) Enhanced fluoride uptake in enamel with a fluoride-impregnated prophylactic cup. J Dent Res 55:333–341PubMedCrossRef Stookey GK, Stahlman DB (1976) Enhanced fluoride uptake in enamel with a fluoride-impregnated prophylactic cup. J Dent Res 55:333–341PubMedCrossRef
19.
go back to reference Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92(11):963–969PubMedCrossRef Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92(11):963–969PubMedCrossRef
20.
go back to reference Reise M, Wyrwa R, Müller U, Zylinski M, Völpel A, Schnabelrauch M, Berg A, Jandt KD, Watts DC, Sigusch BW (2012) Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dent Mater 28(2):179–188PubMedCrossRef Reise M, Wyrwa R, Müller U, Zylinski M, Völpel A, Schnabelrauch M, Berg A, Jandt KD, Watts DC, Sigusch BW (2012) Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dent Mater 28(2):179–188PubMedCrossRef
21.
go back to reference Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2009) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732CrossRef Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2009) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732CrossRef
22.
go back to reference Duan K, Sibley CD, Davidson CJ, Surette MG (2009) Chemical interactions between organisms in microbial communities. Contrib Microbiol 16:1–17PubMedCrossRef Duan K, Sibley CD, Davidson CJ, Surette MG (2009) Chemical interactions between organisms in microbial communities. Contrib Microbiol 16:1–17PubMedCrossRef
23.
go back to reference Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331PubMedCrossRef Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331PubMedCrossRef
24.
go back to reference Teughels W, Kinder Haake S, Sliepen I, Pauwels M, van Eldere J, Cassiman J, Quirynen M (2007) Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res 86:611–617PubMedCrossRef Teughels W, Kinder Haake S, Sliepen I, Pauwels M, van Eldere J, Cassiman J, Quirynen M (2007) Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res 86:611–617PubMedCrossRef
25.
go back to reference Sliepen I, Hofkens J, van Essche M, Quirynen M, Teughels W (2008) Aggregatibacter actinomycetemcomitans adhesion inhibited in a flow cell. Oral Microbiol Immunol 23:520–524PubMedCrossRef Sliepen I, Hofkens J, van Essche M, Quirynen M, Teughels W (2008) Aggregatibacter actinomycetemcomitans adhesion inhibited in a flow cell. Oral Microbiol Immunol 23:520–524PubMedCrossRef
26.
go back to reference Suci P, Young M (2011) Selective killing of Aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with Streptococcus sanguinis. Arch Oral Biol 56:1055–1063PubMedCrossRef Suci P, Young M (2011) Selective killing of Aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with Streptococcus sanguinis. Arch Oral Biol 56:1055–1063PubMedCrossRef
28.
go back to reference Chow AW, Patten V, Guze LB (1975) Susceptibility of anaerobic bacteria to metronidazole: relative resistance of non-spore-forming gram-positive baccilli. J Infect Dis 131(2):182–185PubMedCrossRef Chow AW, Patten V, Guze LB (1975) Susceptibility of anaerobic bacteria to metronidazole: relative resistance of non-spore-forming gram-positive baccilli. J Infect Dis 131(2):182–185PubMedCrossRef
29.
go back to reference Shaddox LM, Walker C (2009) Microbial testing in periodontics: value, limitations and future directions. Periodontol 2000(50):25–38CrossRef Shaddox LM, Walker C (2009) Microbial testing in periodontics: value, limitations and future directions. Periodontol 2000(50):25–38CrossRef
30.
go back to reference Kalsi R, Vandana K, Prakash S (2011) Effect of local drug delivery in chronic periodontitis patients: a meta-analysis. J Indian Soc Periodontol 15(4):304–309PubMedCentralPubMedCrossRef Kalsi R, Vandana K, Prakash S (2011) Effect of local drug delivery in chronic periodontitis patients: a meta-analysis. J Indian Soc Periodontol 15(4):304–309PubMedCentralPubMedCrossRef
31.
go back to reference Riep B, Purucker P, Bernimoulin J (1999) Repeated local metronidazole-therapy as adjunct to scaling and root planing in maintenance patients. J Clin Periodontol 26(11):710–715PubMedCrossRef Riep B, Purucker P, Bernimoulin J (1999) Repeated local metronidazole-therapy as adjunct to scaling and root planing in maintenance patients. J Clin Periodontol 26(11):710–715PubMedCrossRef
32.
go back to reference Salvi G, Mombelli A, Mayfield L, Rutar A, Suvan J, Garrett S, Lang N (2002) Local antimicrobial therapy after initial periodontal treatment. J Clin Periodontol 29(6):540–550PubMedCrossRef Salvi G, Mombelli A, Mayfield L, Rutar A, Suvan J, Garrett S, Lang N (2002) Local antimicrobial therapy after initial periodontal treatment. J Clin Periodontol 29(6):540–550PubMedCrossRef
33.
go back to reference Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1(1):115–123PubMedCrossRef Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1(1):115–123PubMedCrossRef
Metadata
Title
Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria
Authors
Marco C. Bottino
Rodrigo A. Arthur
R. Aaron Waeiss
Krzysztof Kamocki
Karen S. Gregson
Richard L. Gregory
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 9/2014
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-014-1201-x

Other articles of this Issue 9/2014

Clinical Oral Investigations 9/2014 Go to the issue