Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 6/2017

01-11-2017 | Original Article

Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage

Authors: Danilo Janune, Tarek Abd El Kader, Eriko Aoyama, Takashi Nishida, Yasuhiko Tabata, Satoshi Kubota, Masaharu Takigawa

Published in: Journal of Bone and Mineral Metabolism | Issue 6/2017

Login to get access

Abstract

Knowledge of the microenvironment of articular cartilage in health and disease is the key to accomplishing fundamental disease-modifying treatments for osteoarthritis. The proteins comprising the CCN Family are matricellular proteins with a remarkable relevance within the context of cartilage metabolism. CCN2 displays a great capability for regenerating articular cartilage, and CCN3 has been shown to activate the expression of genes related to articular chondrocytes and to repress genes related to endochondral ossification in epiphyseal chondrocytes. Moreover, mice lacking CCN3 protein have been shown to display ostearthritic changes in their knee articular cartilage. In this study, we employed a monoiodoacetic acid (MIA)-induced osteoarthritic model to investigate whether osteoarthritic changes in the cartilage are reciprocally accompanied by CCN3 down-regulation and an inducible overexpression system to evaluate the effects of CCN3 on articular chondrocytes in vitro. Finally, we also investigated the effects of exogenous CCN3 in vivo during the early stages of MIA-induced osteoarthritis. We discovered that CCN3 is expressed by articular chondrocytes in normal rat knees, whereas it is rapidly down-regulated in osteoarthritic knees. In vitro, we also discovered that CCN3 increases the proteoglycan accumulation, the gene expression of type II collagen, tenascin-C and lubricin, as well as the protein production of tenascin-C and lubricin in articular chondrocytes. In vivo, it was discovered that exogenous CCN3 increased tidemark integrity and produced an increased production of lubricin protein. The potential utility of CCN3 as a future therapeutic agent and possible strategies to improve its therapeutic functions are also discussed.
Literature
1.
go back to reference Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B et al (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73CrossRefPubMedPubMedCentral Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B et al (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73CrossRefPubMedPubMedCentral
2.
go back to reference Saito T, Kawaguchi H (2010) HIF-2α as a possible therapeutic target of osteoarthritis. Osteoarthritis Cartilage 18:1552–1556CrossRefPubMed Saito T, Kawaguchi H (2010) HIF-2α as a possible therapeutic target of osteoarthritis. Osteoarthritis Cartilage 18:1552–1556CrossRefPubMed
3.
go back to reference Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrino 178:169–175CrossRef Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrino 178:169–175CrossRef
5.
go back to reference Perbal B, Takigawa M (eds) (2005) CCN proteins–a new family of cell growth and differentiation regulators. Imperial College Press, London, pp 1–311 Perbal B, Takigawa M (eds) (2005) CCN proteins–a new family of cell growth and differentiation regulators. Imperial College Press, London, pp 1–311
6.
go back to reference Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783CrossRefPubMed Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783CrossRefPubMed
7.
go back to reference Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 4:477–494CrossRefPubMed Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 4:477–494CrossRefPubMed
8.
go back to reference Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada N et al (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764CrossRefPubMed Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada N et al (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23:1751–1764CrossRefPubMed
9.
go back to reference Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319CrossRefPubMed Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319CrossRefPubMed
10.
go back to reference Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E et al (2014) The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 59:180–188CrossRefPubMed Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E et al (2014) The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 59:180–188CrossRefPubMed
11.
go back to reference Janune D, Kubota S, Nishida T, Kawaki H, Perbal B et al (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040CrossRefPubMed Janune D, Kubota S, Nishida T, Kawaki H, Perbal B et al (2011) Novel effects of CCN3 that may direct the differentiation of chondrocytes. FEBS Lett 585:3033–3040CrossRefPubMed
12.
go back to reference Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS et al (1993) Tenascin is associated with articular cartilage development. Dev Dyn 198:123–134CrossRefPubMed Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS et al (1993) Tenascin is associated with articular cartilage development. Dev Dyn 198:123–134CrossRefPubMed
13.
14.
go back to reference Roddy KA, Boulter CA (2015) Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease. Osteoarthritis Cartilage 24:607–615CrossRef Roddy KA, Boulter CA (2015) Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease. Osteoarthritis Cartilage 24:607–615CrossRef
15.
go back to reference Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E et al (1989) Transposon mutagenesis of baculoviruses: analysis of Thrichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169CrossRefPubMed Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E et al (1989) Transposon mutagenesis of baculoviruses: analysis of Thrichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169CrossRefPubMed
16.
go back to reference Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as target DNA. Virology 211:397–407CrossRefPubMed Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as target DNA. Virology 211:397–407CrossRefPubMed
17.
go back to reference Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706CrossRefPubMed Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706CrossRefPubMed
18.
go back to reference Abd El Kader T, Kubota S, Janune D et al (2013) Anti-fibrotic effect of CCN3 accompanied by altered gene expression profile of the CCN family. J Cell Commun Signal 7:11–18CrossRefPubMed Abd El Kader T, Kubota S, Janune D et al (2013) Anti-fibrotic effect of CCN3 accompanied by altered gene expression profile of the CCN family. J Cell Commun Signal 7:11–18CrossRefPubMed
19.
go back to reference Tabata Y, Nagano A, Muniruzzaman M, Ikada Y (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19:1781–1789CrossRefPubMed Tabata Y, Nagano A, Muniruzzaman M, Ikada Y (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19:1781–1789CrossRefPubMed
20.
go back to reference Yamamoto M, Tabata Y, Hong L, Miyamoto S, Hashimoto N et al (2000) Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. J Control Release 64:133–142CrossRefPubMed Yamamoto M, Tabata Y, Hong L, Miyamoto S, Hashimoto N et al (2000) Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. J Control Release 64:133–142CrossRefPubMed
21.
go back to reference Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci USA 110:5004–5009CrossRefPubMedPubMedCentral Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci USA 110:5004–5009CrossRefPubMedPubMedCentral
22.
go back to reference Jay GD, Waller KA (2014) The biology of lubricin: near frictionless joint motion. Matrix Biol 39:17–24CrossRefPubMed Jay GD, Waller KA (2014) The biology of lubricin: near frictionless joint motion. Matrix Biol 39:17–24CrossRefPubMed
23.
go back to reference Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A et al (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 18:839–848CrossRefPubMed Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A et al (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 18:839–848CrossRefPubMed
24.
go back to reference von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G et al (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35:806–811CrossRefPubMed von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G et al (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35:806–811CrossRefPubMed
25.
go back to reference Kempson G. (1980) The mechanical properties of articular cartilage. In: Sokoloff L (ed.) The Joints and Synovial Fluid. Academic Press Inc. Volume 2., New York, USA, p 238–239 Kempson G. (1980) The mechanical properties of articular cartilage. In: Sokoloff L (ed.) The Joints and Synovial Fluid. Academic Press Inc. Volume 2., New York, USA, p 238–239
26.
go back to reference Schmidt MB, Mow VC, Chun LE, Eyre DR (1990) Effects of proteoglycan extraction on the tensile behaviour of articular cartilage. J Orthop Res 8:353–363CrossRefPubMed Schmidt MB, Mow VC, Chun LE, Eyre DR (1990) Effects of proteoglycan extraction on the tensile behaviour of articular cartilage. J Orthop Res 8:353–363CrossRefPubMed
27.
go back to reference Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37:1013–1022CrossRefPubMed Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37:1013–1022CrossRefPubMed
28.
go back to reference Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21:339–345CrossRefPubMed Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21:339–345CrossRefPubMed
29.
go back to reference Ikemura S, Hasegawa M, Iino T, Miyamoto K, Imanaka-Yoshida K, Yoshida T, Sudo A (2015) Effect of tenascine-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits. J Orthop Res 33:567–571CrossRef Ikemura S, Hasegawa M, Iino T, Miyamoto K, Imanaka-Yoshida K, Yoshida T, Sudo A (2015) Effect of tenascine-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits. J Orthop Res 33:567–571CrossRef
30.
go back to reference Kawaguchi H (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6PubMed Kawaguchi H (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25:1–6PubMed
31.
go back to reference Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM et al (2007) Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56:3662–3669CrossRefPubMedPubMedCentral Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM et al (2007) Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56:3662–3669CrossRefPubMedPubMedCentral
32.
go back to reference Koyama E, Saunders C, Salhab I, Decker RS, Chen I et al (2014) Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res 93:663–670CrossRefPubMedPubMedCentral Koyama E, Saunders C, Salhab I, Decker RS, Chen I et al (2014) Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res 93:663–670CrossRefPubMedPubMedCentral
34.
go back to reference Kosinska MK, Ludwig TE, Liebisch G, Zhang R, Siebert HC et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10:e0125192CrossRefPubMedPubMedCentral Kosinska MK, Ludwig TE, Liebisch G, Zhang R, Siebert HC et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10:e0125192CrossRefPubMedPubMedCentral
35.
go back to reference Elsaid KA, Machan JT, Waller K, Fleming BC, Jay GD (2009) The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum 60(10):2997–3006CrossRefPubMedPubMedCentral Elsaid KA, Machan JT, Waller K, Fleming BC, Jay GD (2009) The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum 60(10):2997–3006CrossRefPubMedPubMedCentral
36.
go back to reference Teeple E, Elsaid KA, Fleming BC, Jay GD, Aslani K et al (2008) Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J Orthop Res 26:231–237CrossRefPubMedPubMedCentral Teeple E, Elsaid KA, Fleming BC, Jay GD, Aslani K et al (2008) Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J Orthop Res 26:231–237CrossRefPubMedPubMedCentral
37.
go back to reference Young AA, McLennan S, Smith MM, Smith SM, Cake MA et al (2006) Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther 8:R41CrossRefPubMedPubMedCentral Young AA, McLennan S, Smith MM, Smith SM, Cake MA et al (2006) Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther 8:R41CrossRefPubMedPubMedCentral
38.
go back to reference Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD et al (2008) Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58:1707–1715CrossRefPubMedPubMedCentral Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD et al (2008) Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58:1707–1715CrossRefPubMedPubMedCentral
39.
go back to reference Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S et al (2013) The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Metab 31:274–284CrossRef Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S et al (2013) The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Metab 31:274–284CrossRef
40.
go back to reference Mansfield JC, Winlove CP (2012) A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. J Anat 220:405–416CrossRefPubMedPubMedCentral Mansfield JC, Winlove CP (2012) A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. J Anat 220:405–416CrossRefPubMedPubMedCentral
41.
go back to reference Schultz M, Molligan J, Schon L, Zhang Z (2015) Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees. PLoS One 10:e0120949CrossRefPubMedPubMedCentral Schultz M, Molligan J, Schon L, Zhang Z (2015) Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees. PLoS One 10:e0120949CrossRefPubMedPubMedCentral
42.
go back to reference Pan J, Zhou X, Li W, Novotny JE, Doty SB et al (2009) In situ measurement of transport between sub-chondral bone and articular cartilage. J Orthop Res 27:1347–1352CrossRefPubMedPubMedCentral Pan J, Zhou X, Li W, Novotny JE, Doty SB et al (2009) In situ measurement of transport between sub-chondral bone and articular cartilage. J Orthop Res 27:1347–1352CrossRefPubMedPubMedCentral
43.
go back to reference Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16:708–771CrossRefPubMed Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16:708–771CrossRefPubMed
Metadata
Title
Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage
Authors
Danilo Janune
Tarek Abd El Kader
Eriko Aoyama
Takashi Nishida
Yasuhiko Tabata
Satoshi Kubota
Masaharu Takigawa
Publication date
01-11-2017
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 6/2017
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-016-0793-4

Other articles of this Issue 6/2017

Journal of Bone and Mineral Metabolism 6/2017 Go to the issue