Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 1/2012

01-01-2012 | Original Article

Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

Authors: Olav P. van der Jagt, Jacqueline C. van der Linden, Jan H. Waarsing, Jan A. N. Verhaar, Harrie Weinans

Published in: Journal of Bone and Mineral Metabolism | Issue 1/2012

Login to get access

Abstract

Mechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment protocols were tested in a pilot experiment using ovariectomized rats with loading schemes of 2 × 8 min/day, 5 days/week (n = 2 rats per protocol). Bone volume and architecture were evaluated during a 10 week follow-up using in-vivo microcomputed tomography scanning. The loading protocol in which a 45 Hz sine wave was applied at 2 Hz with an acceleration of 0.5g showed an anabolic effect on bone and was therefore further analyzed in two groups of animals (n = 6 each group) with WBV starting directly after or 3 weeks after ovariectomy and compared to a control (non-WBV) group at 0, 3, 6 and 10 weeks’ follow-up. In the follow-up experiment the WBV stimulus did not significantly affect trabecular volume fraction or cortical bone volume in any of the treatment groups during the 10 week follow-up. WBV did reduce weight gain that was induced as a consequence of ovariectomy. We could not demonstrate any significant effects of WBV on bone loss as a consequence of ovariectomy in rats; however, the weight gain that normally results after ovariectomy was partly prevented. Treatment with WBV was not able to prevent bone loss during induced osteoporosis.
Literature
1.
go back to reference Iwamoto J, Takeda T, Sato Y (2007) Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis—usefulness of alendronate and risedronate. Expert Opin Pharmacother 8:2743–2756PubMedCrossRef Iwamoto J, Takeda T, Sato Y (2007) Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis—usefulness of alendronate and risedronate. Expert Opin Pharmacother 8:2743–2756PubMedCrossRef
2.
go back to reference Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef
3.
go back to reference Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066PubMedCrossRef Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066PubMedCrossRef
4.
go back to reference Xie L, Rubin C, Judex S (2008) Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol 104:1056–1062PubMedCrossRef Xie L, Rubin C, Judex S (2008) Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol 104:1056–1062PubMedCrossRef
5.
go back to reference Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G (1998) Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int 63:510–514PubMedCrossRef Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G (1998) Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int 63:510–514PubMedCrossRef
6.
go back to reference Oxlund BS, Ortoft G, Andreassen TT, Oxlund H (2003) Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 32:69–77PubMedCrossRef Oxlund BS, Ortoft G, Andreassen TT, Oxlund H (2003) Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 32:69–77PubMedCrossRef
7.
go back to reference Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339PubMedCrossRef Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339PubMedCrossRef
8.
go back to reference Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204:3389–3399PubMed Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204:3389–3399PubMed
9.
go back to reference Saxon LK, Robling AG, Alam I, Turner CH (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36:454–464PubMedCrossRef Saxon LK, Robling AG, Alam I, Turner CH (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36:454–464PubMedCrossRef
10.
go back to reference Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS (2002) Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res 17:1613–1620PubMedCrossRef Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS (2002) Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res 17:1613–1620PubMedCrossRef
11.
go back to reference Tanaka SM, Alam IM, Turner CH (2003) Stochastic resonance in osteogenic response to mechanical loading. FASEB J 17:313–314PubMed Tanaka SM, Alam IM, Turner CH (2003) Stochastic resonance in osteogenic response to mechanical loading. FASEB J 17:313–314PubMed
13.
go back to reference Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19:1640–1650PubMedCrossRef Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19:1640–1650PubMedCrossRef
14.
go back to reference Brouwers JE, van Rietbergen B, Ito K, Huiskes R (2010) Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res 28:62–69 Brouwers JE, van Rietbergen B, Ito K, Huiskes R (2010) Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res 28:62–69
15.
go back to reference Lynch MA, Brodt MD, Silva MJ (2010) Skeletal effects of whole-body vibration in adult and aged mice. J Orthop Res 28:241–247 Lynch MA, Brodt MD, Silva MJ (2010) Skeletal effects of whole-body vibration in adult and aged mice. J Orthop Res 28:241–247
16.
go back to reference Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, Stuermer KM, Stuermer EK (2009) Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int 20:1999–2008 Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, Stuermer KM, Stuermer EK (2009) Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int 20:1999–2008
17.
go back to reference Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359PubMedCrossRef Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359PubMedCrossRef
18.
go back to reference Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S (2011) The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 26:42–49 Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S (2011) The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 26:42–49
19.
go back to reference Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351PubMedCrossRef Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351PubMedCrossRef
20.
go back to reference Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18:876–884PubMedCrossRef Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18:876–884PubMedCrossRef
21.
go back to reference Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17:157–163PubMed Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17:157–163PubMed
22.
go back to reference Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947PubMedCrossRef Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947PubMedCrossRef
23.
go back to reference Pajamaki I, Sievanen H, Kannus P, Jokihaara J, Vuohelainen T, Jarvinen TL (2008) Skeletal effects of estrogen and mechanical loading are structurally distinct. Bone 43:748–757PubMedCrossRef Pajamaki I, Sievanen H, Kannus P, Jokihaara J, Vuohelainen T, Jarvinen TL (2008) Skeletal effects of estrogen and mechanical loading are structurally distinct. Bone 43:748–757PubMedCrossRef
24.
go back to reference Raisz LG, Seeman E (2001) Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res 16:1948–1952PubMedCrossRef Raisz LG, Seeman E (2001) Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res 16:1948–1952PubMedCrossRef
25.
go back to reference Jiang JM, Sacco SM, Ward WE (2008) Ovariectomy-induced hyperphagia does not modulate bone mineral density or bone strength in rats. J Nutr 138:2106–2110PubMedCrossRef Jiang JM, Sacco SM, Ward WE (2008) Ovariectomy-induced hyperphagia does not modulate bone mineral density or bone strength in rats. J Nutr 138:2106–2110PubMedCrossRef
26.
go back to reference Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S (2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA 104:17879–17884PubMedCrossRef Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S (2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA 104:17879–17884PubMedCrossRef
27.
go back to reference Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149:6065–6075PubMedCrossRef Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149:6065–6075PubMedCrossRef
28.
go back to reference Maddalozzo GF, Iwaniec UT, Turner RT, Rosen CJ, Widrick JJ (2008) Whole-body vibration slows the acquisition of fat in mature female rats. Int J Obes (Lond) 32:1348–1354CrossRef Maddalozzo GF, Iwaniec UT, Turner RT, Rosen CJ, Widrick JJ (2008) Whole-body vibration slows the acquisition of fat in mature female rats. Int J Obes (Lond) 32:1348–1354CrossRef
29.
go back to reference Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620PubMedCrossRef Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620PubMedCrossRef
Metadata
Title
Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats
Authors
Olav P. van der Jagt
Jacqueline C. van der Linden
Jan H. Waarsing
Jan A. N. Verhaar
Harrie Weinans
Publication date
01-01-2012
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 1/2012
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-011-0293-5

Other articles of this Issue 1/2012

Journal of Bone and Mineral Metabolism 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.