Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 5/2009

01-09-2009 | Original Article

Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction

Authors: Shane A. Lloyd, Yuyu Y. Yuan, Steven J. Simske, Stephanie E. Riffle, Virginia L. Ferguson, Ted A. Bateman

Published in: Journal of Bone and Mineral Metabolism | Issue 5/2009

Login to get access

Abstract

Macrophage colony-stimulating factor (M-CSF) is a hematopoietic growth factor that plays a critical role in early osteoclastogenesis. To characterize the skeletal effects of M-CSF, we administered soluble M-CSF to mice. It was hypothesized that M-CSF would stimulate bone formation through coupled activity of osteoclasts and osteoblasts. Twenty-four male C57BL/6 J mice (n = 12/group, aged 7 weeks) received subcutaneous injections of human M-CSF [5 mg/(kg day)] or inert vehicle (VEH) for 21 days. M-CSF increased serum bone turnover markers (+57% TRAP-5b and +44% osteocalcin). Microcomputed tomography revealed an anabolic effect on tibial trabecular bone, with higher bone volume fraction (+35%), connectivity density (+79%), and number (+18%), as well as lower trabecular separation (−18%). M-CSF had no significant effect on cortical bone mineral content, geometry, or strength. There was no change in quantitative histomorphometry parameters of femoral cortical bone. These results reveal the complex, site-specific effects of M-CSF. In particular, we have demonstrated an anabolic effect of M-CSF on trabecular bone achieved through coupled activation of osteoblasts. However, in contrast to previous studies, M-CSF was found to have no effect on cortical bone. M-CSF was demonstrated to significantly influence both bone modeling and remodeling in relatively young animals.
Literature
1.
go back to reference Stanley ER et al (1983) CSF-1: a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem 21:151–159PubMedCrossRef Stanley ER et al (1983) CSF-1: a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem 21:151–159PubMedCrossRef
2.
go back to reference Rettenmier CW, Sherr CJ (1989) The mononuclear phagocyte colony-stimulating factor (CSF-1, M-CSF). Hematol Oncol Clin N Am 3:479–493 Rettenmier CW, Sherr CJ (1989) The mononuclear phagocyte colony-stimulating factor (CSF-1, M-CSF). Hematol Oncol Clin N Am 3:479–493
3.
go back to reference Hattersley G et al (1991) Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro. Biochem Biophys Res Commun 177:526–531PubMedCrossRef Hattersley G et al (1991) Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro. Biochem Biophys Res Commun 177:526–531PubMedCrossRef
4.
go back to reference Hume DA et al (1988) The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocyte system in vivo. J Immunol 141:3405–3409PubMed Hume DA et al (1988) The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocyte system in vivo. J Immunol 141:3405–3409PubMed
5.
go back to reference Stanley ER et al (1994) The biology and action of colony stimulating factor-1. Stem Cells 12:15–24 (discussion 25)PubMed Stanley ER et al (1994) The biology and action of colony stimulating factor-1. Stem Cells 12:15–24 (discussion 25)PubMed
6.
go back to reference Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638PubMedCrossRef Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638PubMedCrossRef
7.
go back to reference Tanaka S et al (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263PubMedCrossRef Tanaka S et al (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263PubMedCrossRef
8.
go back to reference Fuller K et al (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178:1733–1744PubMedCrossRef Fuller K et al (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178:1733–1744PubMedCrossRef
9.
go back to reference Yoshida H et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature (Lond) 345:442–444CrossRef Yoshida H et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature (Lond) 345:442–444CrossRef
10.
go back to reference Wiktor-Jedrzejczak W et al (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832PubMedCrossRef Wiktor-Jedrzejczak W et al (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832PubMedCrossRef
11.
go back to reference Abboud SL et al (2002) Rescue of the osteopetrotic defect in op/op mice by osteoblast-specific targeting of soluble colony-stimulating factor-1. Endocrinology 143:1942–1949PubMedCrossRef Abboud SL et al (2002) Rescue of the osteopetrotic defect in op/op mice by osteoblast-specific targeting of soluble colony-stimulating factor-1. Endocrinology 143:1942–1949PubMedCrossRef
12.
go back to reference Kodama H et al (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272PubMedCrossRef Kodama H et al (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272PubMedCrossRef
13.
go back to reference Hermann L, Ferguson VL, Bateman TA, Simske SJ (2000) Combined treatment effects of IGF-I and M-CSF on mouse bone composition, mechanical properties and quantitative histomorphometry. J Bone Miner Res 15:369CrossRef Hermann L, Ferguson VL, Bateman TA, Simske SJ (2000) Combined treatment effects of IGF-I and M-CSF on mouse bone composition, mechanical properties and quantitative histomorphometry. J Bone Miner Res 15:369CrossRef
14.
go back to reference Abboud SL et al (2003) Osteoblast-specific targeting of soluble colony-stimulating factor-1 increases cortical bone thickness in mice. J Bone Miner Res 18:1386–1394PubMedCrossRef Abboud SL et al (2003) Osteoblast-specific targeting of soluble colony-stimulating factor-1 increases cortical bone thickness in mice. J Bone Miner Res 18:1386–1394PubMedCrossRef
15.
go back to reference Takahashi N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602PubMedCrossRef Takahashi N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602PubMedCrossRef
16.
go back to reference Nishino I, Amizuka N, Ozawa H (2001) Histochemical examination of osteoblastic activity in op/op mice with or without injection of recombinant M-CSF. J Bone Miner Metab 19:267–276PubMedCrossRef Nishino I, Amizuka N, Ozawa H (2001) Histochemical examination of osteoblastic activity in op/op mice with or without injection of recombinant M-CSF. J Bone Miner Metab 19:267–276PubMedCrossRef
17.
go back to reference Centrella M, McCarthy TL, Canalis E (1991) Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am 73:1418–1428PubMed Centrella M, McCarthy TL, Canalis E (1991) Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am 73:1418–1428PubMed
18.
go back to reference Martin TJ (1993) Hormones in the coupling of bone resorption and formation. Osteoporos Int 3:121–125PubMedCrossRef Martin TJ (1993) Hormones in the coupling of bone resorption and formation. Osteoporos Int 3:121–125PubMedCrossRef
19.
go back to reference Rodan GA (1991) Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. J Bone Miner Res 6:527–530PubMed Rodan GA (1991) Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. J Bone Miner Res 6:527–530PubMed
20.
go back to reference Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 250:261–276PubMed Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 250:261–276PubMed
21.
go back to reference Karsdal MA et al (2008) Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun 366:483–488PubMedCrossRef Karsdal MA et al (2008) Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun 366:483–488PubMedCrossRef
22.
go back to reference Abboud SL et al (2003) Analysis of the mouse CSF-1 gene promoter in a transgenic mouse model. J Histochem Cytochem 51:941–949PubMed Abboud SL et al (2003) Analysis of the mouse CSF-1 gene promoter in a transgenic mouse model. J Histochem Cytochem 51:941–949PubMed
23.
go back to reference Hermann LK et al (2000) Combined treatment effects of IGF-I and M-CSF on mouse bone composition, mechanical properties and quantitative histomorphometry (abstract). J Bone Miner Res 15:369CrossRef Hermann LK et al (2000) Combined treatment effects of IGF-I and M-CSF on mouse bone composition, mechanical properties and quantitative histomorphometry (abstract). J Bone Miner Res 15:369CrossRef
24.
go back to reference Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef
25.
go back to reference Howard GA et al (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78:3204–3208PubMedCrossRef Howard GA et al (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78:3204–3208PubMedCrossRef
26.
go back to reference Lacey DL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef Lacey DL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef
27.
go back to reference Poole KE, Reeve J (2005) Parathyroid hormone: a bone anabolic and catabolic agent. Curr Opin Pharmacol 5:612–617PubMedCrossRef Poole KE, Reeve J (2005) Parathyroid hormone: a bone anabolic and catabolic agent. Curr Opin Pharmacol 5:612–617PubMedCrossRef
28.
go back to reference Jiang Y et al (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941PubMedCrossRef Jiang Y et al (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941PubMedCrossRef
29.
go back to reference Neer RM et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441PubMedCrossRef Neer RM et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441PubMedCrossRef
30.
31.
go back to reference Horwitz M, Stewart A, Greenspan SL (2000) Sequential parathyroid hormone/alendronate therapy for osteoporosis: robbing Peter to pay Paul? J Clin Endocrinol Metab 85:2127–2128PubMedCrossRef Horwitz M, Stewart A, Greenspan SL (2000) Sequential parathyroid hormone/alendronate therapy for osteoporosis: robbing Peter to pay Paul? J Clin Endocrinol Metab 85:2127–2128PubMedCrossRef
32.
go back to reference Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136:3632–3638PubMedCrossRef Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136:3632–3638PubMedCrossRef
33.
go back to reference Jilka RL et al (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446PubMedCrossRef Jilka RL et al (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446PubMedCrossRef
34.
go back to reference Wronski TJ et al (1993) Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats. Endocrinology 132:823–831PubMedCrossRef Wronski TJ et al (1993) Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats. Endocrinology 132:823–831PubMedCrossRef
35.
go back to reference Perkins SL, Kling SJ (1995) Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol 269:E1024–E1030PubMed Perkins SL, Kling SJ (1995) Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol 269:E1024–E1030PubMed
36.
go back to reference Gusella GL et al (1990) Lipopolysaccharide, but not IFN-gamma, down-regulates c-fms mRNA proto-oncogene expression in murine macrophages. J Immunol 144:3574–3580PubMed Gusella GL et al (1990) Lipopolysaccharide, but not IFN-gamma, down-regulates c-fms mRNA proto-oncogene expression in murine macrophages. J Immunol 144:3574–3580PubMed
37.
go back to reference Kreipe H et al (1988) Multinucleated giant cells generated in vitro. Terminally differentiated macrophages with down-regulated c-fms expression. Am J Pathol 130:232–243PubMed Kreipe H et al (1988) Multinucleated giant cells generated in vitro. Terminally differentiated macrophages with down-regulated c-fms expression. Am J Pathol 130:232–243PubMed
38.
go back to reference Amano H et al (1995) Downregulation of colony-stimulating factor-1 (CSF-1) binding by CSF-1 in isolated osteoclasts. Calcif Tissue Int 57:367–370PubMedCrossRef Amano H et al (1995) Downregulation of colony-stimulating factor-1 (CSF-1) binding by CSF-1 in isolated osteoclasts. Calcif Tissue Int 57:367–370PubMedCrossRef
39.
go back to reference Janckila AJ et al (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218PubMedCrossRef Janckila AJ et al (2005) Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 77:209–218PubMedCrossRef
40.
go back to reference Hattersley G et al (1988) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J Cell Physiol 137:199–203PubMedCrossRef Hattersley G et al (1988) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J Cell Physiol 137:199–203PubMedCrossRef
41.
go back to reference Greenspan SL et al (2000) Bisphosphonates: safety and efficacy in the treatment and prevention of osteoporosis. Am Fam Physician 61:2731–2736PubMed Greenspan SL et al (2000) Bisphosphonates: safety and efficacy in the treatment and prevention of osteoporosis. Am Fam Physician 61:2731–2736PubMed
42.
go back to reference Bauer RJ et al (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. J Pharmacol Exp Ther 268:152–158PubMed Bauer RJ et al (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. J Pharmacol Exp Ther 268:152–158PubMed
Metadata
Title
Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction
Authors
Shane A. Lloyd
Yuyu Y. Yuan
Steven J. Simske
Stephanie E. Riffle
Virginia L. Ferguson
Ted A. Bateman
Publication date
01-09-2009
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 5/2009
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-009-0071-9

Other articles of this Issue 5/2009

Journal of Bone and Mineral Metabolism 5/2009 Go to the issue