Skip to main content
Top
Published in: Archives of Virology 2/2019

Open Access 01-02-2019 | Brief Report

Ectromelia virus induces tubulin cytoskeletal rearrangement in immune cells accompanied by a loss of the microtubule organizing center and increased α-tubulin acetylation

Authors: Lidia Szulc-Dąbrowska, Mateusz Palusiński, Justyna Struzik, Karolina P. Gregorczyk-Zboroch, Felix N. Toka, Ada Schollenberger, Małgorzata Gieryńska

Published in: Archives of Virology | Issue 2/2019

Login to get access

Abstract

Ectromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport. This indicates a strong ability of ECTV to subvert the MT cytoskeleton of highly specialized immune cells.
Literature
1.
go back to reference Buller RM (2004) Mousepox: a small animal model for biodefense research. Appl Biosaf 9:10–19CrossRef Buller RM (2004) Mousepox: a small animal model for biodefense research. Appl Biosaf 9:10–19CrossRef
2.
go back to reference Esteban D, Parker S, Schriewer J et al (2012) Mousepox, a small animal model of smallpox. Methods Mol Biol 890:177–198CrossRefPubMed Esteban D, Parker S, Schriewer J et al (2012) Mousepox, a small animal model of smallpox. Methods Mol Biol 890:177–198CrossRefPubMed
3.
go back to reference Abrahao J, Oliveira TML, Campos RK et al (2009) Bovine vaccinia outbreaks: detection and isolation of vaccinia virus in milk samples. Foodborne Pathog Dis 6:1141–1146CrossRefPubMed Abrahao J, Oliveira TML, Campos RK et al (2009) Bovine vaccinia outbreaks: detection and isolation of vaccinia virus in milk samples. Foodborne Pathog Dis 6:1141–1146CrossRefPubMed
5.
go back to reference Laguardia-Nascimento M, de Oliveira APF, Azevedo IC et al (2017) Spread of poxviruses in livestock in Brazil associated with cases of double and triple infection. Arch Virol 162:2797–2801CrossRefPubMed Laguardia-Nascimento M, de Oliveira APF, Azevedo IC et al (2017) Spread of poxviruses in livestock in Brazil associated with cases of double and triple infection. Arch Virol 162:2797–2801CrossRefPubMed
6.
go back to reference van der Vaart B, Akhmanova A, Straube A (2009) Regulation of microtubule dynamic instability. Biochem Soc Trans 37:1007–1013CrossRefPubMed van der Vaart B, Akhmanova A, Straube A (2009) Regulation of microtubule dynamic instability. Biochem Soc Trans 37:1007–1013CrossRefPubMed
8.
9.
go back to reference Szulc-Dabrowska L, Gregorczyk KP, Struzik J et al (2016) Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: a morphological in vitro study in a murine cell line. Cytoskeleton 7:396–417CrossRef Szulc-Dabrowska L, Gregorczyk KP, Struzik J et al (2016) Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: a morphological in vitro study in a murine cell line. Cytoskeleton 7:396–417CrossRef
10.
go back to reference Newsome TP, Marzook NB (2015) Viruses that ride on the coat-tails of actin nucleation. Semin Cell Dev Biol. 46:155–163CrossRefPubMed Newsome TP, Marzook NB (2015) Viruses that ride on the coat-tails of actin nucleation. Semin Cell Dev Biol. 46:155–163CrossRefPubMed
11.
go back to reference Drillien R, Spehner D, Bohbot A et al (2000) Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268:471–481CrossRefPubMed Drillien R, Spehner D, Bohbot A et al (2000) Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268:471–481CrossRefPubMed
12.
go back to reference Chahroudi A, Garber DA, Reeves P et al (2006) Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus. J Virol 80:8469–8481CrossRefPubMedPubMedCentral Chahroudi A, Garber DA, Reeves P et al (2006) Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus. J Virol 80:8469–8481CrossRefPubMedPubMedCentral
13.
go back to reference Hansen SJ, Rushton J, Dekonenko A et al (2011) Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection. Virology 412:411–425CrossRefPubMedPubMedCentral Hansen SJ, Rushton J, Dekonenko A et al (2011) Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection. Virology 412:411–425CrossRefPubMedPubMedCentral
14.
go back to reference Szulc-Dąbrowska L, Struzik J, Ostrowska A et al (2017) Functional paralysis of GM-CSF–derived bone marrow cells productively infected with ectromelia virus. PLoS One 12:0179166CrossRef Szulc-Dąbrowska L, Struzik J, Ostrowska A et al (2017) Functional paralysis of GM-CSF–derived bone marrow cells productively infected with ectromelia virus. PLoS One 12:0179166CrossRef
15.
go back to reference Szulc-Dąbrowska L, Struzik J, Cymerys J et al (2017) The in vitro inhibitory effect of ectromelia virus infection on innate and adaptive immune properties of GM-CSF-derived bone marrow cells is mouse strain-independent. Front Microbiol 8:2539CrossRefPubMedPubMedCentral Szulc-Dąbrowska L, Struzik J, Cymerys J et al (2017) The in vitro inhibitory effect of ectromelia virus infection on innate and adaptive immune properties of GM-CSF-derived bone marrow cells is mouse strain-independent. Front Microbiol 8:2539CrossRefPubMedPubMedCentral
16.
go back to reference Drabek K, van Ham M, Stepanova T et al (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16:2259–2264CrossRefPubMed Drabek K, van Ham M, Stepanova T et al (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16:2259–2264CrossRefPubMed
17.
19.
go back to reference Imaoka H, Toiyama Y, Saigusa S et al (2015) RacGAP1 expression, increasing tumor malignant potential, as a predictive biomarker for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 36:346–354CrossRefPubMed Imaoka H, Toiyama Y, Saigusa S et al (2015) RacGAP1 expression, increasing tumor malignant potential, as a predictive biomarker for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 36:346–354CrossRefPubMed
20.
go back to reference Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250CrossRefPubMed Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250CrossRefPubMed
21.
go back to reference Mistry SJ, Bank A, Atweh GF (2007) Synergistic antiangiogenic effects of stathmin inhibition and taxol. Mol Cancer Res 5:773–782CrossRefPubMed Mistry SJ, Bank A, Atweh GF (2007) Synergistic antiangiogenic effects of stathmin inhibition and taxol. Mol Cancer Res 5:773–782CrossRefPubMed
22.
go back to reference Rauhala HE, Teppo S, Niemelä S et al (2013) Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res 33:45–52PubMed Rauhala HE, Teppo S, Niemelä S et al (2013) Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res 33:45–52PubMed
23.
go back to reference Wu C, Asokan SB, Berginski ME et al (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–987CrossRefPubMedPubMedCentral Wu C, Asokan SB, Berginski ME et al (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–987CrossRefPubMedPubMedCentral
24.
go back to reference Krause M, Dent EW, Bear JE et al (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564CrossRefPubMed Krause M, Dent EW, Bear JE et al (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564CrossRefPubMed
25.
26.
go back to reference Chen QY, Xu W, Jiao DM et al (2013) Silence of ezrin modifies migration and actin cytoskeleton rearrangements and enhances chemosensitivity of lung cancer cells in vitro. Mol Cell Biochem 377:207–218CrossRefPubMed Chen QY, Xu W, Jiao DM et al (2013) Silence of ezrin modifies migration and actin cytoskeleton rearrangements and enhances chemosensitivity of lung cancer cells in vitro. Mol Cell Biochem 377:207–218CrossRefPubMed
27.
go back to reference Szulc-Dąbrowska L, Gregorczyk KP, Struzik J, et al (2018) Long actin-based cellular protrusions as novel evidence of cytopathic effect induced in immune cells infected by ectromelia virus. Cent Eur J Immunol (Ahead of print) Szulc-Dąbrowska L, Gregorczyk KP, Struzik J, et al (2018) Long actin-based cellular protrusions as novel evidence of cytopathic effect induced in immune cells infected by ectromelia virus. Cent Eur J Immunol (Ahead of print)
28.
29.
30.
go back to reference Chen N, Danila MI, Feng Z et al (2003) The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317:165–186CrossRefPubMed Chen N, Danila MI, Feng Z et al (2003) The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317:165–186CrossRefPubMed
31.
go back to reference Lynn H, Horsington J, Ter LK et al (2012) Loss of cytoskeletal transport during egress critically attenuates Ectromelia virus infection in vivo. J Virol 86:7427–7443CrossRefPubMedPubMedCentral Lynn H, Horsington J, Ter LK et al (2012) Loss of cytoskeletal transport during egress critically attenuates Ectromelia virus infection in vivo. J Virol 86:7427–7443CrossRefPubMedPubMedCentral
32.
go back to reference Gregorczyk KP, Wyżewski Z, Szczepanowska J et al (2018) Ectromelia virus affects mitochondrial network morphology, distribution, and physiology in murine fibroblasts and macrophage cell line. Viruses 10:266CrossRefPubMedCentral Gregorczyk KP, Wyżewski Z, Szczepanowska J et al (2018) Ectromelia virus affects mitochondrial network morphology, distribution, and physiology in murine fibroblasts and macrophage cell line. Viruses 10:266CrossRefPubMedCentral
33.
go back to reference Naghavi MH, Gundersen GG, Walsh D (2013) Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci USA 110:18268–18273CrossRefPubMed Naghavi MH, Gundersen GG, Walsh D (2013) Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci USA 110:18268–18273CrossRefPubMed
34.
35.
go back to reference Arakawa Y, Cordeiro JV, Way M (2007) F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1:213–226CrossRefPubMed Arakawa Y, Cordeiro JV, Way M (2007) F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1:213–226CrossRefPubMed
Metadata
Title
Ectromelia virus induces tubulin cytoskeletal rearrangement in immune cells accompanied by a loss of the microtubule organizing center and increased α-tubulin acetylation
Authors
Lidia Szulc-Dąbrowska
Mateusz Palusiński
Justyna Struzik
Karolina P. Gregorczyk-Zboroch
Felix N. Toka
Ada Schollenberger
Małgorzata Gieryńska
Publication date
01-02-2019
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 2/2019
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-4030-4

Other articles of this Issue 2/2019

Archives of Virology 2/2019 Go to the issue