Skip to main content
Top
Published in: Archives of Virology 11/2018

01-11-2018 | Original Article

Soft-shelled turtle iridovirus enters cells via cholesterol-dependent, clathrin-mediated endocytosis as well as macropinocytosis

Authors: Youhua Huang, Xiaohong Huang, Shaowen Wang, Yepin Yu, Songwei Ni, Qiwei Qin

Published in: Archives of Virology | Issue 11/2018

Login to get access

Abstract

Ranaviruses are nucleoplasmic large DNA viruses that can cause major economic losses in the aquaculture industry and pose a severe threat to global ecological diversity. The available literature demonstrates that classifiable members of the genus Ranavirus enter cells via multiple and complicated routes. Here, we demonstrated the underlying cellular entry mechanism of soft-shelled turtle iridovirus (STIV) using green fluorescence tagged recombinant virus. Treatment with chlorpromazine, sucrose, ethyl-isopropyl amiloride, chloroquine or bafilomycin A1 all significantly decreased STIV infection, suggesting that STIV uses clathrin-mediated endocytosis and macropinocytosis to enter cells via a pH-dependent pathway. Depletion of cellular cholesterol with methyl-β-cyclodextrin significantly inhibited STIV entry, but neither filipin III nor nystatin did, suggesting that STIV entry was cholesterol dependent but caveola independent. Treatment with dynasore, genistein, ML-7 or cytochalasin D all significantly inhibited STIV infection, indicating that Rac GTPase and myosin II activity were required for the macropinocytosis-like pathway as well as actin polymerization. Our findings suggest that the molecular events involved in STIV entry are not identical to those of other ranavirus isolates. Our results also extend our understanding of the molecular mechanism of iridovirus entry and pathogenesis.
Literature
3.
go back to reference McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533CrossRefPubMed McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533CrossRefPubMed
4.
go back to reference Daecke J, Fackler OT, Dittmar MT, Kräusslich HG (2005) Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79:1581–1594CrossRefPubMedPubMedCentral Daecke J, Fackler OT, Dittmar MT, Kräusslich HG (2005) Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79:1581–1594CrossRefPubMedPubMedCentral
5.
go back to reference Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972CrossRefPubMedPubMedCentral Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972CrossRefPubMedPubMedCentral
6.
go back to reference Huang HC, Chen CC, Chang WC, Tao MH, Huang C (2012) Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 86:9443–9453CrossRefPubMedPubMedCentral Huang HC, Chen CC, Chang WC, Tao MH, Huang C (2012) Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 86:9443–9453CrossRefPubMedPubMedCentral
7.
go back to reference Piccinotti S, Kirchhausen T, Whelan SP (2013) Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. J Virol 87:11637–11647CrossRefPubMedPubMedCentral Piccinotti S, Kirchhausen T, Whelan SP (2013) Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. J Virol 87:11637–11647CrossRefPubMedPubMedCentral
8.
go back to reference Méndez E, Muñoz-Yañez C, Sánchez-San Martín C, Aguirre-Crespo G, Baños-Lara Mdel R, Gutierrez M, Espinosa R, Acevedo Y, Arias CF, López S (2014) Characterization of human astrovirus cell entry. J Virol 88:2452–2460CrossRefPubMedPubMedCentral Méndez E, Muñoz-Yañez C, Sánchez-San Martín C, Aguirre-Crespo G, Baños-Lara Mdel R, Gutierrez M, Espinosa R, Acevedo Y, Arias CF, López S (2014) Characterization of human astrovirus cell entry. J Virol 88:2452–2460CrossRefPubMedPubMedCentral
9.
go back to reference Sieczkarski SB, Whittaker GR (2002) Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545CrossRefPubMed Sieczkarski SB, Whittaker GR (2002) Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545CrossRefPubMed
10.
go back to reference Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483CrossRefPubMed Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483CrossRefPubMed
11.
go back to reference Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypiä T, Heino J (2002) Internalization of echovirus 1 in caveolae. J Virol 76:1856–1865CrossRefPubMedPubMedCentral Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypiä T, Heino J (2002) Internalization of echovirus 1 in caveolae. J Virol 76:1856–1865CrossRefPubMedPubMedCentral
12.
go back to reference Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, Zitzmann N, Nichita NB (2010) Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol 84:243–253CrossRefPubMed Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, Zitzmann N, Nichita NB (2010) Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol 84:243–253CrossRefPubMed
13.
go back to reference Guo CJ, Liu D, Wu YY, Yang XB, Yang LS, Mi S, Huang YX, Luo YW, Jia KT, Liu ZY, Chen WJ, Weng SP, Yu XQ, He JG (2011) Entry of tiger frog virus (an Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated endocytosis pathway. J Virol 85:6416–6426CrossRefPubMedPubMedCentral Guo CJ, Liu D, Wu YY, Yang XB, Yang LS, Mi S, Huang YX, Luo YW, Jia KT, Liu ZY, Chen WJ, Weng SP, Yu XQ, He JG (2011) Entry of tiger frog virus (an Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated endocytosis pathway. J Virol 85:6416–6426CrossRefPubMedPubMedCentral
14.
go back to reference Mercer J, Helenius A (2012) Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 15:490–499CrossRefPubMed Mercer J, Helenius A (2012) Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 15:490–499CrossRefPubMed
15.
go back to reference Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A (2013) Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog 9:e1003309CrossRefPubMedPubMedCentral Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A (2013) Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog 9:e1003309CrossRefPubMedPubMedCentral
16.
go back to reference Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6:e1001110CrossRefPubMedPubMedCentral Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6:e1001110CrossRefPubMedPubMedCentral
17.
go back to reference Wang S, Huang X, Huang Y, Hao X, Xu H, Cai M, Wang H, Qin Q (2014) A novel marine DNA virus (Singapore grouper iridovirus, SGIV) entry into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 88:13047–13063CrossRefPubMedPubMedCentral Wang S, Huang X, Huang Y, Hao X, Xu H, Cai M, Wang H, Qin Q (2014) A novel marine DNA virus (Singapore grouper iridovirus, SGIV) entry into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 88:13047–13063CrossRefPubMedPubMedCentral
18.
go back to reference Chinchar VG (2002) Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol 147:447–470CrossRefPubMed Chinchar VG (2002) Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol 147:447–470CrossRefPubMed
19.
go back to reference Zhu YQ, Wang XL (2016) Genetic diversity of ranaviruses in amphibians in China: 10 new isolates and their implications. Pak J. Zool 48:107–114 Zhu YQ, Wang XL (2016) Genetic diversity of ranaviruses in amphibians in China: 10 new isolates and their implications. Pak J. Zool 48:107–114
20.
go back to reference Braunwald J, Nonnenmacher H, Tripier-Darcy F (1985) Ultrastructural and biochemical study of frog virus 3 uptake by BHK-21 cells. J Gen Virol 66:283–293CrossRefPubMed Braunwald J, Nonnenmacher H, Tripier-Darcy F (1985) Ultrastructural and biochemical study of frog virus 3 uptake by BHK-21 cells. J Gen Virol 66:283–293CrossRefPubMed
21.
go back to reference Guo CJ, Wu YY, Yang LS, Yang XB, He J, Mi S, Jia KT, Weng SP, Yu XQ, He JG (2012) Infectious spleen and kidney necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent endocytosis. J Virol 86:2621–2631CrossRefPubMedPubMedCentral Guo CJ, Wu YY, Yang LS, Yang XB, He J, Mi S, Jia KT, Weng SP, Yu XQ, He JG (2012) Infectious spleen and kidney necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent endocytosis. J Virol 86:2621–2631CrossRefPubMedPubMedCentral
22.
go back to reference Chen ZX, Zheng JC, Jiang YL (1999) A new iridovirus isolated from soft-shelled turtle. Virus Res 63:147–151CrossRefPubMed Chen ZX, Zheng JC, Jiang YL (1999) A new iridovirus isolated from soft-shelled turtle. Virus Res 63:147–151CrossRefPubMed
23.
go back to reference Huang YH, Huang XH, Liu H, Gong J, Ouyang ZL, Cui HC, Cao JH, Zhao Y, Wang X, Jiang YL, Qin QW (2009) Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics 10:224CrossRefPubMedPubMedCentral Huang YH, Huang XH, Liu H, Gong J, Ouyang ZL, Cui HC, Cao JH, Zhao Y, Wang X, Jiang YL, Qin QW (2009) Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics 10:224CrossRefPubMedPubMedCentral
24.
go back to reference Huang Y, Huang X, Cai J, Ye F, Qin Q (2011) Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 16(6):581–593CrossRefPubMed Huang Y, Huang X, Cai J, Ye F, Qin Q (2011) Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 16(6):581–593CrossRefPubMed
25.
go back to reference Huang Y, Huang X, Cai J, Ye F, Guan L, Liu H, Qin Q (2011) Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication. Virus Res 160(1–2):221–229CrossRefPubMed Huang Y, Huang X, Cai J, Ye F, Guan L, Liu H, Qin Q (2011) Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication. Virus Res 160(1–2):221–229CrossRefPubMed
27.
go back to reference DeWire SM, Money ES, Krall SP, Damania B (2003) Rhesusmonkeyrhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication. Virology 312:122–134CrossRefPubMed DeWire SM, Money ES, Krall SP, Damania B (2003) Rhesusmonkeyrhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication. Virology 312:122–134CrossRefPubMed
28.
go back to reference Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C (2008) SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 18:290–301CrossRefPubMed Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C (2008) SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 18:290–301CrossRefPubMed
29.
go back to reference Chen CL, Hou WH, Liu IH, Hsiao G, Huang SS, Huang JS (2009) Inhibitors of clathrin-dependent endocytosis enhance TGFbeta signaling and responses. J Cell Sci 122:1863–1871CrossRefPubMedPubMedCentral Chen CL, Hou WH, Liu IH, Hsiao G, Huang SS, Huang JS (2009) Inhibitors of clathrin-dependent endocytosis enhance TGFbeta signaling and responses. J Cell Sci 122:1863–1871CrossRefPubMedPubMedCentral
30.
go back to reference Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T (2004) Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol 78:8701–8708CrossRefPubMedPubMedCentral Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T (2004) Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol 78:8701–8708CrossRefPubMedPubMedCentral
31.
go back to reference Zuhorn IS, Kalicharan Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277:18021–18028CrossRefPubMed Zuhorn IS, Kalicharan Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277:18021–18028CrossRefPubMed
32.
go back to reference Vela EM, Zhang L, Colpitts TM, Davey RA, Aronson JF (2007) Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 369:1–11CrossRefPubMedPubMedCentral Vela EM, Zhang L, Colpitts TM, Davey RA, Aronson JF (2007) Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 369:1–11CrossRefPubMedPubMedCentral
33.
go back to reference Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612CrossRefPubMed Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612CrossRefPubMed
35.
go back to reference Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B (2009) Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J Virol 83:4895–4911CrossRefPubMedPubMedCentral Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B (2009) Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J Virol 83:4895–4911CrossRefPubMedPubMedCentral
36.
go back to reference Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535CrossRefPubMed Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535CrossRefPubMed
37.
go back to reference Sánchez EG, Quintas A, Pérez-Núñez D, Nogal M, Barroso S, Carrascosa ÁL, Revilla Y (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 8:e1002754CrossRefPubMedPubMedCentral Sánchez EG, Quintas A, Pérez-Núñez D, Nogal M, Barroso S, Carrascosa ÁL, Revilla Y (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 8:e1002754CrossRefPubMedPubMedCentral
38.
go back to reference Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y (2010) Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 23:e1001121CrossRef Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y (2010) Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 23:e1001121CrossRef
39.
go back to reference Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F (2012) Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 7:e34795CrossRefPubMedPubMedCentral Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F (2012) Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 7:e34795CrossRefPubMedPubMedCentral
40.
go back to reference de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJ, de Haan CA (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 7:e1001329CrossRefPubMedPubMedCentral de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJ, de Haan CA (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 7:e1001329CrossRefPubMedPubMedCentral
Metadata
Title
Soft-shelled turtle iridovirus enters cells via cholesterol-dependent, clathrin-mediated endocytosis as well as macropinocytosis
Authors
Youhua Huang
Xiaohong Huang
Shaowen Wang
Yepin Yu
Songwei Ni
Qiwei Qin
Publication date
01-11-2018
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 11/2018
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-3966-8

Other articles of this Issue 11/2018

Archives of Virology 11/2018 Go to the issue