Skip to main content
Top
Published in: Archives of Virology 9/2017

01-09-2017 | Original Article

Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus

Authors: Zsolt Csabai, Irma F. Takács, Michael Snyder, Zsolt Boldogkői, Dóra Tombácz

Published in: Archives of Virology | Issue 9/2017

Login to get access

Abstract

Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aujeszky A (1902) A contagious disease, not readily distinguishable from rabies, with unknown origin. Veterinarius 25:387–396 (in Hungarian) Aujeszky A (1902) A contagious disease, not readily distinguishable from rabies, with unknown origin. Veterinarius 25:387–396 (in Hungarian)
4.
go back to reference Boldogkői Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed Boldogkői Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed
5.
go back to reference Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359PubMedPubMedCentral Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359PubMedPubMedCentral
6.
go back to reference Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249CrossRefPubMed Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249CrossRefPubMed
9.
go back to reference Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130CrossRefPubMed Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130CrossRefPubMed
11.
go back to reference Prorok J, Kovács PP, Kristóf AA, Nagy N, Tombácz D, Tóth JS, Ördög B, Jost N, Virág L, Papp JG, Varró A, Tóth A, Boldogkői Z (2009) Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes. J Biomed Biotechnol. doi:10.1155/2009/361795 PubMedPubMedCentral Prorok J, Kovács PP, Kristóf AA, Nagy N, Tombácz D, Tóth JS, Ördög B, Jost N, Virág L, Papp JG, Varró A, Tóth A, Boldogkői Z (2009) Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes. J Biomed Biotechnol. doi:10.​1155/​2009/​361795 PubMedPubMedCentral
12.
go back to reference Boldogkői Z, Nógrádi A (2003) Gene and cancer therapy—pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther 3:155–182CrossRefPubMed Boldogkői Z, Nógrádi A (2003) Gene and cancer therapy—pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther 3:155–182CrossRefPubMed
13.
go back to reference Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W (2011) Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J 8:272CrossRefPubMedPubMedCentral Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W (2011) Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J 8:272CrossRefPubMedPubMedCentral
14.
go back to reference Maresch C, Lange E, Teifke JP, Fuchs W, Klupp B, Müller T, Mettenleiter TC, Vahlenkamp TW (2012) Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against pseudorabies virus infection. Vet Microbiol 161:20–25CrossRefPubMed Maresch C, Lange E, Teifke JP, Fuchs W, Klupp B, Müller T, Mettenleiter TC, Vahlenkamp TW (2012) Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against pseudorabies virus infection. Vet Microbiol 161:20–25CrossRefPubMed
15.
go back to reference Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W (2014) Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol 95:948–959CrossRefPubMed Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W (2014) Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol 95:948–959CrossRefPubMed
16.
go back to reference Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M, Boldogkői Z (2014) Strain kaplan of pseudorabies virus genome sequenced by PacBio single-molecule real-time sequencing technology. Genome Announc. doi:10.1128/genomeA.00628-14 Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M, Boldogkői Z (2014) Strain kaplan of pseudorabies virus genome sequenced by PacBio single-molecule real-time sequencing technology. Genome Announc. doi:10.​1128/​genomeA.​00628-14
19.
go back to reference Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefèvre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics. doi:10.1186/1471-2164-9-123 PubMedPubMedCentral Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefèvre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics. doi:10.​1186/​1471-2164-9-123 PubMedPubMedCentral
21.
go back to reference Anderson K, Costa RH, Holland LE, Wagner EK (1980) Characterization of herpes simplex virus type 1 RNA. Present in the absence of de novo protein synthesis. J Virol 34(1):9–27PubMedPubMedCentral Anderson K, Costa RH, Holland LE, Wagner EK (1980) Characterization of herpes simplex virus type 1 RNA. Present in the absence of de novo protein synthesis. J Virol 34(1):9–27PubMedPubMedCentral
22.
go back to reference Mackem S, Roizman B (1980) Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proc Natl Acad Sci USA 77(12):7122–7126CrossRefPubMedPubMedCentral Mackem S, Roizman B (1980) Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proc Natl Acad Sci USA 77(12):7122–7126CrossRefPubMedPubMedCentral
23.
go back to reference Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454CrossRefPubMed Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454CrossRefPubMed
24.
go back to reference Cheung AK (1991) Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65:5260–5271PubMedPubMedCentral Cheung AK (1991) Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65:5260–5271PubMedPubMedCentral
25.
go back to reference Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136CrossRefPubMed Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136CrossRefPubMed
26.
go back to reference Fuchs W, Ehrlich C, Klupp BG, Mettenleiter TC (2000) Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol 81:1539–1543CrossRefPubMed Fuchs W, Ehrlich C, Klupp BG, Mettenleiter TC (2000) Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol 81:1539–1543CrossRefPubMed
27.
go back to reference Zhang G, Leader DP (1990) The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol 71:2433–2441CrossRefPubMed Zhang G, Leader DP (1990) The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol 71:2433–2441CrossRefPubMed
28.
go back to reference Baumeister J, Klupp BG, Mettenleiter TC (1995) Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J Virol 6(9):5560–5567 Baumeister J, Klupp BG, Mettenleiter TC (1995) Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J Virol 6(9):5560–5567
29.
go back to reference Huang YJ, Chien MS, Wu CY, Huang C (2005) Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods 130(1–2):102–107CrossRefPubMed Huang YJ, Chien MS, Wu CY, Huang C (2005) Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods 130(1–2):102–107CrossRefPubMed
30.
go back to reference Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedPubMedCentral Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedPubMedCentral
31.
go back to reference Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, HammerschmidtW Sergeant A (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76(19):9635–9644CrossRefPubMedPubMedCentral Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, HammerschmidtW Sergeant A (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76(19):9635–9644CrossRefPubMedPubMedCentral
32.
go back to reference Sato B, Sommer M, Ito H, Arvin AM (2003) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 77(22):12369–12372CrossRefPubMedPubMedCentral Sato B, Sommer M, Ito H, Arvin AM (2003) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 77(22):12369–12372CrossRefPubMedPubMedCentral
33.
go back to reference Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ (2006) UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 80(2):769–784CrossRefPubMedPubMedCentral Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ (2006) UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 80(2):769–784CrossRefPubMedPubMedCentral
34.
go back to reference Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810PubMedPubMedCentral Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810PubMedPubMedCentral
35.
go back to reference McGregor F, Phelan A, Dunlop J, Clements JB (1996) Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 70(3):1931–1940PubMedPubMedCentral McGregor F, Phelan A, Dunlop J, Clements JB (1996) Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 70(3):1931–1940PubMedPubMedCentral
36.
go back to reference Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97:2692–2696CrossRefPubMedPubMedCentral Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97:2692–2696CrossRefPubMedPubMedCentral
37.
go back to reference Li M, Wang S, Cai M, Guo H, Zheng C (2011) Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417(2):385–393CrossRefPubMed Li M, Wang S, Cai M, Guo H, Zheng C (2011) Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417(2):385–393CrossRefPubMed
38.
go back to reference Li M, Wang S, Cai M, Zheng C (2011) Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85(19):10239–10251CrossRefPubMedPubMedCentral Li M, Wang S, Cai M, Zheng C (2011) Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85(19):10239–10251CrossRefPubMedPubMedCentral
39.
go back to reference Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68(1):119–138CrossRefPubMed Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68(1):119–138CrossRefPubMed
42.
43.
go back to reference Roizman B, Campadelli-Fiume G (2007) Alphaherpes viral genes and their functions. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses—biology, therapy and immunoprophylaxis, 1st edn. Cambridge University Press, Cambridge, pp 70–92CrossRef Roizman B, Campadelli-Fiume G (2007) Alphaherpes viral genes and their functions. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses—biology, therapy and immunoprophylaxis, 1st edn. Cambridge University Press, Cambridge, pp 70–92CrossRef
44.
go back to reference Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep. doi:10.1038/srep43751 Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep. doi:10.​1038/​srep43751
45.
46.
go back to reference Bras F, Dezelee S, Simonet B, Nguyen X, Vende P, Flamand A, Masse MJ (1999) The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res 60:29–40CrossRefPubMed Bras F, Dezelee S, Simonet B, Nguyen X, Vende P, Flamand A, Masse MJ (1999) The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res 60:29–40CrossRefPubMed
47.
go back to reference Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500CrossRefPubMedPubMedCentral Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500CrossRefPubMedPubMedCentral
48.
go back to reference Reynolds AE, Fan Y, Baines JD (2000) Characterization of the UL33 gene product of herpes simplex virus 1. Virology 266:310–318CrossRefPubMed Reynolds AE, Fan Y, Baines JD (2000) Characterization of the UL33 gene product of herpes simplex virus 1. Virology 266:310–318CrossRefPubMed
49.
go back to reference Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071CrossRefPubMedPubMedCentral Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071CrossRefPubMedPubMedCentral
50.
go back to reference Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99CrossRefPubMed Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99CrossRefPubMed
51.
go back to reference de Wind N, Berns A, Gielkens A, Kimman T (1993) Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol 74:351–359CrossRefPubMed de Wind N, Berns A, Gielkens A, Kimman T (1993) Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol 74:351–359CrossRefPubMed
52.
go back to reference Powers L, Wilkinson KS, Ryan P (1994) Characterization of the prv43 gene of pseudorabies virus and demonstration that it is not required for virus growth in cell culture. Virology 199:81–88CrossRefPubMed Powers L, Wilkinson KS, Ryan P (1994) Characterization of the prv43 gene of pseudorabies virus and demonstration that it is not required for virus growth in cell culture. Virology 199:81–88CrossRefPubMed
53.
go back to reference Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. J Virol 58(2):339–347PubMedPubMedCentral Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. J Virol 58(2):339–347PubMedPubMedCentral
54.
go back to reference Dezélée S, Bras F, Vende P, Simonet B, Nguyen X, Flamand A, Masse MJ (1996) The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res 42:27–39CrossRefPubMed Dezélée S, Bras F, Vende P, Simonet B, Nguyen X, Flamand A, Masse MJ (1996) The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res 42:27–39CrossRefPubMed
55.
go back to reference Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z (2015) Characterization of novel transcripts in pseudorabies virus. Viruses 7(5):2727–2744CrossRefPubMedPubMedCentral Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z (2015) Characterization of novel transcripts in pseudorabies virus. Viruses 7(5):2727–2744CrossRefPubMedPubMedCentral
56.
go back to reference Yamada S, Imada T, Watanabe W, Honda Y, Nakajima-Iijima S, Shimizu Y, Sekikawa K (1991) Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66CrossRefPubMed Yamada S, Imada T, Watanabe W, Honda Y, Nakajima-Iijima S, Shimizu Y, Sekikawa K (1991) Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66CrossRefPubMed
57.
go back to reference Dijkstra JM, Fuchs W, Mettenleiter TC, Klupp BG (1997) Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol 142:17–35CrossRefPubMed Dijkstra JM, Fuchs W, Mettenleiter TC, Klupp BG (1997) Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol 142:17–35CrossRefPubMed
58.
go back to reference Dean H, Cheung AK (1993) A 3’coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961PubMedPubMedCentral Dean H, Cheung AK (1993) A 3’coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961PubMedPubMedCentral
59.
go back to reference Krause PR, Croen KD, Ostrove JM, Straus SE (1990) Structural and kinetic analyses of herpes simplex virus type I latencyassociated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 86(1):235–241CrossRefPubMedPubMedCentral Krause PR, Croen KD, Ostrove JM, Straus SE (1990) Structural and kinetic analyses of herpes simplex virus type I latencyassociated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 86(1):235–241CrossRefPubMedPubMedCentral
60.
go back to reference Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral
61.
go back to reference Tombácz D, Tóth JS, Boldogkoi Z (2011) Deletion of the virion host shut: off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection. Genomics 98(1):15–25CrossRefPubMed Tombácz D, Tóth JS, Boldogkoi Z (2011) Deletion of the virion host shut: off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection. Genomics 98(1):15–25CrossRefPubMed
62.
go back to reference Campbell AM, Heyer LJ (2007) Basic research with DNA microarray. In: Winslow S (ed) Discovering genomics proteomics and bioinformatics, 2nd edn. CSHL Press, San Francisco, pp 238–241 Campbell AM, Heyer LJ (2007) Basic research with DNA microarray. In: Winslow S (ed) Discovering genomics proteomics and bioinformatics, 2nd edn. CSHL Press, San Francisco, pp 238–241
64.
go back to reference Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. doi:10.1093/nar/gkq543 Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. doi:10.​1093/​nar/​gkq543
65.
go back to reference Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. doi:10.1093/nar/gkr1146 Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. doi:10.​1093/​nar/​gkr1146
66.
go back to reference Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192CrossRefPubMed Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192CrossRefPubMed
67.
go back to reference Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469CrossRefPubMed Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469CrossRefPubMed
70.
Metadata
Title
Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus
Authors
Zsolt Csabai
Irma F. Takács
Michael Snyder
Zsolt Boldogkői
Dóra Tombácz
Publication date
01-09-2017
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 9/2017
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-017-3420-3

Other articles of this Issue 9/2017

Archives of Virology 9/2017 Go to the issue