Skip to main content
Top
Published in: Archives of Virology 11/2016

01-11-2016 | Original Article

Vaccinia virus dissemination requires p21-activated kinase 1

Authors: Luciana G. Andrade, Jonas D. Albarnaz, Fernanda L. B. Mügge, Bruna A. David, Jônatas S. Abrahão, Flávio G. da Fonseca, Erna G. Kroon, Gustavo B. Menezes, Grant McFadden, Cláudio A. Bonjardim

Published in: Archives of Virology | Issue 11/2016

Login to get access

Abstract

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1-/- MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1-/- MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1-/- cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.
Literature
2.
go back to reference Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway. Nat Rev Microbiol 6:266–275CrossRefPubMedPubMedCentral Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway. Nat Rev Microbiol 6:266–275CrossRefPubMedPubMedCentral
3.
go back to reference Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122:1–11CrossRefPubMed Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122:1–11CrossRefPubMed
5.
go back to reference Humphries AC, Way M (2013) The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 11:551–560CrossRefPubMed Humphries AC, Way M (2013) The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 11:551–560CrossRefPubMed
7.
go back to reference Condit RC, Moussatche N, Traktman P (2006) In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124CrossRefPubMed Condit RC, Moussatche N, Traktman P (2006) In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124CrossRefPubMed
8.
go back to reference Moss B (2007) Poxviridae. In: Fields BN, Knipe DM, Howley PM (eds) Virology, 5th edn. Lippincott-Raven, Philadelfia, pp 2905–2946 Moss B (2007) Poxviridae. In: Fields BN, Knipe DM, Howley PM (eds) Virology, 5th edn. Lippincott-Raven, Philadelfia, pp 2905–2946
11.
go back to reference Perdiguero B, Esteban M (2009) The interferon system and vaccinia virus evasion mechanisms. J Interf Cytokine Res 29:581–598CrossRef Perdiguero B, Esteban M (2009) The interferon system and vaccinia virus evasion mechanisms. J Interf Cytokine Res 29:581–598CrossRef
12.
go back to reference Schepis A, Schramm B, de Haan CA, Locker JK (2006) Vaccinia virus-induced microtubule-dependent cellular rearrangements. Traffic 7:308–323CrossRefPubMed Schepis A, Schramm B, de Haan CA, Locker JK (2006) Vaccinia virus-induced microtubule-dependent cellular rearrangements. Traffic 7:308–323CrossRefPubMed
13.
go back to reference Schramm B, de Haan CA, Young J, Doglio L, Schleich S, Reese C et al (2006) Vaccinia-virus-induced cellular contractility facilitates the subcellular localization of the viral replication sites. Traffic 7:1352–1367CrossRefPubMed Schramm B, de Haan CA, Young J, Doglio L, Schleich S, Reese C et al (2006) Vaccinia-virus-induced cellular contractility facilitates the subcellular localization of the viral replication sites. Traffic 7:1352–1367CrossRefPubMed
14.
go back to reference Pereira AC, Leite FG, Brasil BS, Soares-Martins JA, Torres AA, Pimenta PF et al (2012) A vaccinia virus-driven interplay between the MKK4/7–JNK1/2 pathway and cytoskeleton reorganization. J Virol 86:172–184CrossRefPubMedPubMedCentral Pereira AC, Leite FG, Brasil BS, Soares-Martins JA, Torres AA, Pimenta PF et al (2012) A vaccinia virus-driven interplay between the MKK4/7–JNK1/2 pathway and cytoskeleton reorganization. J Virol 86:172–184CrossRefPubMedPubMedCentral
15.
go back to reference Law M, Carter GC, Roberts KL, Hollinshead M, Smith GL (2006) Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci USA 103:5989–5994CrossRefPubMedPubMedCentral Law M, Carter GC, Roberts KL, Hollinshead M, Smith GL (2006) Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci USA 103:5989–5994CrossRefPubMedPubMedCentral
16.
17.
go back to reference Huang CY, Lu TY, Bair CH, Chang YS, Jwo JK, Chang W A novel cellular protein, VPEF, facilitates vaccinia virus penetration into HeLa cells through fluid phase endocytosis. J Virol 82:7988–7999 Huang CY, Lu TY, Bair CH, Chang YS, Jwo JK, Chang W A novel cellular protein, VPEF, facilitates vaccinia virus penetration into HeLa cells through fluid phase endocytosis. J Virol 82:7988–7999
18.
go back to reference Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535CrossRefPubMed Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535CrossRefPubMed
19.
go back to reference Rietdorf J, Ploubidou A, Reckmann I, Holmstrom A, Frischknecht F, Zettl M et al (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000CrossRefPubMed Rietdorf J, Ploubidou A, Reckmann I, Holmstrom A, Frischknecht F, Zettl M et al (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000CrossRefPubMed
20.
21.
go back to reference Frischknecht F, Moreau V, Rottger S, Gonfloni S, Reckmann I, Superti-Furga G et al (1999) Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926–929CrossRefPubMed Frischknecht F, Moreau V, Rottger S, Gonfloni S, Reckmann I, Superti-Furga G et al (1999) Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926–929CrossRefPubMed
22.
go back to reference Leite F, Way M (2015) The role of signalling and the cytoskeleton during vaccinia virus egress. Virus Res 209:87–99CrossRefPubMed Leite F, Way M (2015) The role of signalling and the cytoskeleton during vaccinia virus egress. Virus Res 209:87–99CrossRefPubMed
23.
go back to reference Newsome TP, Scaplehorn N, Way M (2004) SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306:124–129CrossRefPubMed Newsome TP, Scaplehorn N, Way M (2004) SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306:124–129CrossRefPubMed
24.
go back to reference Ward BM (2005) The longest micron; transporting poxviruses out of the cell. Cell Microbiol 7:1531–1538CrossRefPubMed Ward BM (2005) The longest micron; transporting poxviruses out of the cell. Cell Microbiol 7:1531–1538CrossRefPubMed
25.
go back to reference Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A et al (2005) Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med 11:731–739CrossRefPubMed Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A et al (2005) Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med 11:731–739CrossRefPubMed
26.
go back to reference Scaplehorn N, Holmstrom A, Moreau V, Frischknecht F, Reckmann I, Way M (2002) Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol 12:740–745CrossRefPubMed Scaplehorn N, Holmstrom A, Moreau V, Frischknecht F, Reckmann I, Way M (2002) Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol 12:740–745CrossRefPubMed
27.
go back to reference Donnelly SK, Weisswange I, Zettl M, Way M (2013) WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr Biol 23:999–1006CrossRefPubMedPubMedCentral Donnelly SK, Weisswange I, Zettl M, Way M (2013) WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr Biol 23:999–1006CrossRefPubMedPubMedCentral
28.
go back to reference Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2:441–448CrossRefPubMed Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2:441–448CrossRefPubMed
29.
go back to reference Weisswange I, Newsome TP, Schleich S, Way M (2009) The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458:87–91CrossRefPubMed Weisswange I, Newsome TP, Schleich S, Way M (2009) The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458:87–91CrossRefPubMed
30.
go back to reference Hunter MP, Russo A, O’Bryan JP (2013) Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int J Mol Sci 14:7829–7852CrossRefPubMedPubMedCentral Hunter MP, Russo A, O’Bryan JP (2013) Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int J Mol Sci 14:7829–7852CrossRefPubMedPubMedCentral
31.
go back to reference Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerization. J Cell Sci 127:673–685CrossRefPubMed Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerization. J Cell Sci 127:673–685CrossRefPubMed
32.
go back to reference Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M (2012) Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12:346–359CrossRefPubMed Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M (2012) Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12:346–359CrossRefPubMed
33.
34.
go back to reference Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD (2001) Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell 8:1041–1052CrossRefPubMed Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD (2001) Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell 8:1041–1052CrossRefPubMed
35.
go back to reference Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (2004) p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5:154–160CrossRefPubMedPubMedCentral Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (2004) p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5:154–160CrossRefPubMedPubMedCentral
36.
go back to reference Johnston JB, Barrett JW, Chang W, Chung CS, Zeng W, Masters J et al (2003) Role of the serine-threonine kinase PAK-1 in myxoma virus replication. J Virol 77:5877–5888CrossRefPubMedPubMedCentral Johnston JB, Barrett JW, Chang W, Chung CS, Zeng W, Masters J et al (2003) Role of the serine-threonine kinase PAK-1 in myxoma virus replication. J Virol 77:5877–5888CrossRefPubMedPubMedCentral
37.
go back to reference Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20:160–169CrossRefPubMed Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20:160–169CrossRefPubMed
38.
go back to reference Pacheco A, Chernoff J (2010) Group I p21-activated kinases: emerging roles in immune function and viral pathogenesis. Int J Biochem Cell Biol 42:13–16CrossRefPubMed Pacheco A, Chernoff J (2010) Group I p21-activated kinases: emerging roles in immune function and viral pathogenesis. Int J Biochem Cell Biol 42:13–16CrossRefPubMed
39.
40.
go back to reference Laliberte JP, Moss B (2009) Appraising the apoptotic mimicry model and the role of phospholipids for poxvirus entry. Proc Natl Acad Sci USA 106:17517–17521CrossRefPubMedPubMedCentral Laliberte JP, Moss B (2009) Appraising the apoptotic mimicry model and the role of phospholipids for poxvirus entry. Proc Natl Acad Sci USA 106:17517–17521CrossRefPubMedPubMedCentral
41.
go back to reference Laliberte JP, Weisberg AS, Moss B (2011) The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog 7:e1002446CrossRefPubMedPubMedCentral Laliberte JP, Weisberg AS, Moss B (2011) The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog 7:e1002446CrossRefPubMedPubMedCentral
42.
go back to reference Husain M, Moss B (2001) Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 75:7528–7542CrossRefPubMedPubMedCentral Husain M, Moss B (2001) Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 75:7528–7542CrossRefPubMedPubMedCentral
44.
go back to reference Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211:53–63CrossRefPubMed Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211:53–63CrossRefPubMed
45.
46.
go back to reference Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15:322–331CrossRefPubMedPubMedCentral Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15:322–331CrossRefPubMedPubMedCentral
47.
go back to reference Soares JA, Leite FG, Andrade LG, Torres AA, de Sousa LP, Barcelos LS et al (2009) Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infection is required for both host survival and viral replication. J Virol 83:6883–6899CrossRefPubMedPubMedCentral Soares JA, Leite FG, Andrade LG, Torres AA, de Sousa LP, Barcelos LS et al (2009) Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infection is required for both host survival and viral replication. J Virol 83:6883–6899CrossRefPubMedPubMedCentral
48.
go back to reference Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E et al (2008) Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. Embo J 27:956–969CrossRefPubMedPubMedCentral Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E et al (2008) Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. Embo J 27:956–969CrossRefPubMedPubMedCentral
49.
go back to reference Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpaa P, Liberali P et al (2008) A raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 19:2857–2869CrossRefPubMedPubMedCentral Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpaa P, Liberali P et al (2008) A raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 19:2857–2869CrossRefPubMedPubMedCentral
50.
go back to reference Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL et al (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 8:e1002754CrossRefPubMedPubMedCentral Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL et al (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 8:e1002754CrossRefPubMedPubMedCentral
51.
go back to reference Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM et al (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657CrossRefPubMedPubMedCentral Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM et al (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657CrossRefPubMedPubMedCentral
52.
go back to reference Van den Broeke C, Deruelle M, Nauwynck HJ, Coller KE, Smith GA, Van Doorsselaere J et al (2009) The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology 385:155–160CrossRefPubMed Van den Broeke C, Deruelle M, Nauwynck HJ, Coller KE, Smith GA, Van Doorsselaere J et al (2009) The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology 385:155–160CrossRefPubMed
53.
go back to reference Villa NY, Bartee E, Mohamed MR, Rahman MM, Barrett JW, McFadden G (2010) Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells. Virology 401:266–279CrossRefPubMedPubMedCentral Villa NY, Bartee E, Mohamed MR, Rahman MM, Barrett JW, McFadden G (2010) Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells. Virology 401:266–279CrossRefPubMedPubMedCentral
54.
go back to reference Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S et al (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852CrossRefPubMedPubMedCentral Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S et al (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852CrossRefPubMedPubMedCentral
55.
go back to reference Abella JV, Galloni C, Pernier J, Barry DJ, Kjær S, Carlier MF, Way M (2016) Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 18:76–86CrossRefPubMed Abella JV, Galloni C, Pernier J, Barry DJ, Kjær S, Carlier MF, Way M (2016) Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 18:76–86CrossRefPubMed
Metadata
Title
Vaccinia virus dissemination requires p21-activated kinase 1
Authors
Luciana G. Andrade
Jonas D. Albarnaz
Fernanda L. B. Mügge
Bruna A. David
Jônatas S. Abrahão
Flávio G. da Fonseca
Erna G. Kroon
Gustavo B. Menezes
Grant McFadden
Cláudio A. Bonjardim
Publication date
01-11-2016
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 11/2016
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-016-2996-3

Other articles of this Issue 11/2016

Archives of Virology 11/2016 Go to the issue