Skip to main content
Top
Published in: Archives of Virology 2/2016

01-02-2016 | Original Article

Identification of a conserved linear epitope using a monoclonal antibody against non-structural protein 3B of foot-and-mouth disease virus

Authors: Chaosi Li, Weifeng Liang, Wenming Liu, Decheng Yang, Haiwei Wang, Wenge Ma, Guohui Zhou, Li Yu

Published in: Archives of Virology | Issue 2/2016

Login to get access

Abstract

Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae that has caused severe economic losses in many countries of the world. Regular vaccinations have been effectively used to control foot-and-mouth disease (FMD) in countries where the disease is enzootic. Distinguishing between infected and vaccinated animals in herds after immunization is an important component of effective eradication strategies. Nonstructural protein (NSP) 3B of FMDV is part of a larger antigen that is used for this differential diagnosis. In this study, an FMDV serotype-independent monoclonal antibody (MAb) against NSP 3B, 5D12, was generated. Using western blot, it was revealed that MAb 5D12 binds to three fragments of 3B displaying the motifs G1PYAGPLERQKPLK14, K18LPQQEGPYAGPMER32 and V45KEGPYEGPVKKPVA59. The motif G1PYAGPLERQKPLK14 was chosen for further mapping. Different truncated motifs derived from the motif G1PYAGPLERQKPLK14 were expressed as GST-fusion constructs for western blot analysis. The results showed that the 5-aa peptide P2YAGP6 was the minimal epitope reactive to MAb 5D12. Subsequent alanine-scanning mutagenesis analysis revealed that Pro2, Gly5 and Pro6 were crucial for MAb 5D12 binding to P2YAGP6. Furthermore, through sequence alignment analysis, the epitope PxxGP recognized by 5D12 was found to be present not only in 3B-1 but also in 3B2 and 3B3 and was highly conserved in seven serotypes of FMDV strains. Western blot analysis also revealed that the peptide epitope could be recognized by sera from FMDV-infected pigs and cattle. Thus, the 5D12-recognized 3B epitope identified here provides theoretical support for the development of MAb 5D12 as a differential diagnosis reagent for FMDV infection.
Literature
1.
go back to reference Atassi MZ, Tarlowski DP, Paull JH (1970) Immunochemistry of sperm whale myoglobin. VII. Correlation of immunochemical cross-reaction of eight myoglobins with structural similarity and its dependence on conformation. Biochim Biophys Acta 221:623–635CrossRefPubMed Atassi MZ, Tarlowski DP, Paull JH (1970) Immunochemistry of sperm whale myoglobin. VII. Correlation of immunochemical cross-reaction of eight myoglobins with structural similarity and its dependence on conformation. Biochim Biophys Acta 221:623–635CrossRefPubMed
2.
go back to reference Bentley L, Fehrsen J, Jordaan F, Huismans H, du Plessis DH (2000) Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries. J Gen Virol 81:993–1000CrossRefPubMed Bentley L, Fehrsen J, Jordaan F, Huismans H, du Plessis DH (2000) Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries. J Gen Virol 81:993–1000CrossRefPubMed
3.
go back to reference Bergmann IE, Astudillo V, Malirat V, Neitzert E (1998) Serodiagnostic strategy for estimation of foot-and-mouth disease viral activity through highly sensitive immunoassays using bioengineered nonstructural proteins. Vet Q 20(Suppl 2):S6–S9CrossRefPubMed Bergmann IE, Astudillo V, Malirat V, Neitzert E (1998) Serodiagnostic strategy for estimation of foot-and-mouth disease viral activity through highly sensitive immunoassays using bioengineered nonstructural proteins. Vet Q 20(Suppl 2):S6–S9CrossRefPubMed
4.
go back to reference Bergmann IE, Malirat V, Neitzert E, Beck E, Panizzutti N, Sanchez C, Falczuk A (2000) Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch Virol 145:473–489CrossRefPubMed Bergmann IE, Malirat V, Neitzert E, Beck E, Panizzutti N, Sanchez C, Falczuk A (2000) Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch Virol 145:473–489CrossRefPubMed
5.
go back to reference Brownlie J (2001) Strategic decisions to evaluate before implementing a vaccine programme in the face of a foot-and-mouth disease (FMD) outbreak. Vet Rec 148:358–360PubMed Brownlie J (2001) Strategic decisions to evaluate before implementing a vaccine programme in the face of a foot-and-mouth disease (FMD) outbreak. Vet Rec 148:358–360PubMed
6.
go back to reference Clavijo A, Wright P, Kitching P (2004) Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet J 167:9–22CrossRefPubMed Clavijo A, Wright P, Kitching P (2004) Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet J 167:9–22CrossRefPubMed
7.
go back to reference Dawe PS, Pinto AA (1978) Antibody responses to type-specific and “virus-infection-associated” antigens in cattle vaccinated with inactivated polyvalent foot and mouth disease virus in North Malawi. Br Vet J 134:504–511PubMed Dawe PS, Pinto AA (1978) Antibody responses to type-specific and “virus-infection-associated” antigens in cattle vaccinated with inactivated polyvalent foot and mouth disease virus in North Malawi. Br Vet J 134:504–511PubMed
8.
go back to reference De Diego M, Brocchi E, Mackay D, De Simone F (1997) The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch Virol 142:2021–2033CrossRefPubMed De Diego M, Brocchi E, Mackay D, De Simone F (1997) The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch Virol 142:2021–2033CrossRefPubMed
9.
go back to reference Denisova GF, Denisov DA, Yeung J, Loeb MB, Diamond MS, Bramson JL (2008) A novel computer algorithm improves antibody epitope prediction using affinity-selected mimotopes: a case study using monoclonal antibodies against the West Nile virus E protein. Mol Immunol 46:125–134CrossRefPubMed Denisova GF, Denisov DA, Yeung J, Loeb MB, Diamond MS, Bramson JL (2008) A novel computer algorithm improves antibody epitope prediction using affinity-selected mimotopes: a case study using monoclonal antibodies against the West Nile virus E protein. Mol Immunol 46:125–134CrossRefPubMed
11.
go back to reference Du Plessis DH, Romito M, Jordaan F (1995) Identification of an antigenic peptide specific for bluetongue virus using phage display expression of NS1 sequences. Immunotechnology 1:221–230CrossRefPubMed Du Plessis DH, Romito M, Jordaan F (1995) Identification of an antigenic peptide specific for bluetongue virus using phage display expression of NS1 sequences. Immunotechnology 1:221–230CrossRefPubMed
12.
go back to reference Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274CrossRefPubMed Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274CrossRefPubMed
14.
go back to reference Hohlich BJ, Wiesmuller KH, Schlapp T, Haas B, Pfaff E, Saahmuller A (2003) Identification of foot-and-mouth disease virus-specific linear B-cell epitopes to differentiate between infected and vaccinated cattle. J Virol 77:8633–8639PubMedCentralCrossRefPubMed Hohlich BJ, Wiesmuller KH, Schlapp T, Haas B, Pfaff E, Saahmuller A (2003) Identification of foot-and-mouth disease virus-specific linear B-cell epitopes to differentiate between infected and vaccinated cattle. J Virol 77:8633–8639PubMedCentralCrossRefPubMed
15.
go back to reference Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefPubMed Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefPubMed
16.
go back to reference Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365:196–210PubMedCentralCrossRefPubMed Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365:196–210PubMedCentralCrossRefPubMed
17.
go back to reference Mackay DK (1998) Differentiating infection from vaccination in foot-and-mouth disease. Vet Q 20(Suppl 2):S2–S5CrossRefPubMed Mackay DK (1998) Differentiating infection from vaccination in foot-and-mouth disease. Vet Q 20(Suppl 2):S2–S5CrossRefPubMed
18.
go back to reference Mackay DK, Forsyth MA, Davies PR, Salt JS (1998) Antibody to the nonstructural proteins of foot-and-mouth disease virus in vaccinated animals exposed to infection. Vet Q 20(Suppl 2):S9–11CrossRefPubMed Mackay DK, Forsyth MA, Davies PR, Salt JS (1998) Antibody to the nonstructural proteins of foot-and-mouth disease virus in vaccinated animals exposed to infection. Vet Q 20(Suppl 2):S9–11CrossRefPubMed
19.
go back to reference May C, Doody JF, Abdullah R, Balderes P, Xu X, Chen CP, Zhu Z, Shapiro L, Kussie P, Hicklin DJ, Liao F, Bohlen P (2005) Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105:4337–4344CrossRefPubMed May C, Doody JF, Abdullah R, Balderes P, Xu X, Chen CP, Zhu Z, Shapiro L, Kussie P, Hicklin DJ, Liao F, Bohlen P (2005) Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105:4337–4344CrossRefPubMed
20.
go back to reference McVicar JW, Sutmoller P (1970) Foot-and-mouth disease: the agar gel diffusion precipitin test for antibody to virus-infection-associated (via) antigen as a tool for epizootiologic surveys. Am J Epidemiol 92:273–278PubMed McVicar JW, Sutmoller P (1970) Foot-and-mouth disease: the agar gel diffusion precipitin test for antibody to virus-infection-associated (via) antigen as a tool for epizootiologic surveys. Am J Epidemiol 92:273–278PubMed
21.
go back to reference Meyer RF, Babcock GD, Newman JF, Burrage TG, Toohey K, Lubroth J, Brown F (1997) Baculovirus expressed 2C of foot-and-mouth disease virus has the potential for differentiating convalescent from vaccinated animals. J Virol Methods 65:33–43CrossRefPubMed Meyer RF, Babcock GD, Newman JF, Burrage TG, Toohey K, Lubroth J, Brown F (1997) Baculovirus expressed 2C of foot-and-mouth disease virus has the potential for differentiating convalescent from vaccinated animals. J Virol Methods 65:33–43CrossRefPubMed
22.
go back to reference Neitzert E, Beck E, de Mello PA, Gomes I, Bergmann IE (1991) Expression of the aphthovirus RNA polymerase gene in Escherichia coli and its use together with other bioengineered nonstructural antigens in detection of late persistent infections. Virology 184:799–804CrossRefPubMed Neitzert E, Beck E, de Mello PA, Gomes I, Bergmann IE (1991) Expression of the aphthovirus RNA polymerase gene in Escherichia coli and its use together with other bioengineered nonstructural antigens in detection of late persistent infections. Virology 184:799–804CrossRefPubMed
23.
go back to reference Oem JK, Kye SJ, Lee KN, Park JH, Kim YJ, Song HJ, Yeh M (2005) Development of synthetic peptide ELISA based on nonstructural protein 2C of foot and mouth disease virus. J Vet Sci 6:317–325PubMed Oem JK, Kye SJ, Lee KN, Park JH, Kim YJ, Song HJ, Yeh M (2005) Development of synthetic peptide ELISA based on nonstructural protein 2C of foot and mouth disease virus. J Vet Sci 6:317–325PubMed
24.
go back to reference Oem JK, Chang BS, Joo HD, Yang MY, Kim GJ, Park JY, Ko YJ, Kim YJ, Park JH, Joo YS (2007) Development of an epitope-blocking-enzyme-linked immunosorbent assay to differentiate between animals infected with and vaccinated against foot-and-mouth disease virus. J Virol Methods 142:174–181CrossRefPubMed Oem JK, Chang BS, Joo HD, Yang MY, Kim GJ, Park JY, Ko YJ, Kim YJ, Park JH, Joo YS (2007) Development of an epitope-blocking-enzyme-linked immunosorbent assay to differentiate between animals infected with and vaccinated against foot-and-mouth disease virus. J Virol Methods 142:174–181CrossRefPubMed
25.
go back to reference Paton DJ, de Clercq K, Greiner M, Dekker A, Brocchi E, Bergmann I, Sammin DJ, Gubbins S, Parida S (2006) Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine 24:6503–6512CrossRefPubMed Paton DJ, de Clercq K, Greiner M, Dekker A, Brocchi E, Bergmann I, Sammin DJ, Gubbins S, Parida S (2006) Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine 24:6503–6512CrossRefPubMed
26.
go back to reference Rodriguez A, Dopazo J, Saiz JC, Sobrino F (1994) Immunogenicity of non-structural proteins of foot-and-mouth disease virus: differences between infected and vaccinated swine. Arch Virol 136:123–131CrossRefPubMed Rodriguez A, Dopazo J, Saiz JC, Sobrino F (1994) Immunogenicity of non-structural proteins of foot-and-mouth disease virus: differences between infected and vaccinated swine. Arch Virol 136:123–131CrossRefPubMed
27.
go back to reference Shen F, Chen PD, Walfield AM, Ye J, House J, Brown F, Wang CY (1999) Differentiation of convalescent animals from those vaccinated against foot-and-mouth disease by a peptide ELISA. Vaccine 17:3039–3049CrossRefPubMed Shen F, Chen PD, Walfield AM, Ye J, House J, Brown F, Wang CY (1999) Differentiation of convalescent animals from those vaccinated against foot-and-mouth disease by a peptide ELISA. Vaccine 17:3039–3049CrossRefPubMed
28.
go back to reference Shen X, Parks RJ, Montefiori DC, Kirchherr JL, Keele BF, Decker JM, Blattner WA, Gao F, Weinhold KJ, Hicks CB, Greenberg ML, Hahn BH, Shaw GM, Haynes BF, Tomaras GD (2009) In vivo gp41 antibodies targeting the 2F5 monoclonal antibody epitope mediate human immunodeficiency virus type 1 neutralization breadth. J Virol 83:3617–3625PubMedCentralCrossRefPubMed Shen X, Parks RJ, Montefiori DC, Kirchherr JL, Keele BF, Decker JM, Blattner WA, Gao F, Weinhold KJ, Hicks CB, Greenberg ML, Hahn BH, Shaw GM, Haynes BF, Tomaras GD (2009) In vivo gp41 antibodies targeting the 2F5 monoclonal antibody epitope mediate human immunodeficiency virus type 1 neutralization breadth. J Virol 83:3617–3625PubMedCentralCrossRefPubMed
29.
go back to reference Silberstein E, Kaplan G, Taboga O, Duffy S, Palma E (1997) Foot-and-mouth disease virus-infected but not vaccinated cattle develop antibodies against recombinant 3AB1 nonstructural protein. Arch Virol 142:795–805CrossRefPubMed Silberstein E, Kaplan G, Taboga O, Duffy S, Palma E (1997) Foot-and-mouth disease virus-infected but not vaccinated cattle develop antibodies against recombinant 3AB1 nonstructural protein. Arch Virol 142:795–805CrossRefPubMed
30.
go back to reference Sorensen KJ, Hansen CM, Madsen ES, Madsen KG (1998) Blocking ELISAs using the FMDV non-structural proteins 3D, 3AB, and 3ABC produced in the baculovirus expression system. Vet Q 20:17–20CrossRefPubMed Sorensen KJ, Hansen CM, Madsen ES, Madsen KG (1998) Blocking ELISAs using the FMDV non-structural proteins 3D, 3AB, and 3ABC produced in the baculovirus expression system. Vet Q 20:17–20CrossRefPubMed
31.
go back to reference Sorensen KJ, Madsen KG, Madsen ES, Salt JS, Nqindi J, Mackay DK (1998) Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch Virol 143:1461–1476CrossRefPubMed Sorensen KJ, Madsen KG, Madsen ES, Salt JS, Nqindi J, Mackay DK (1998) Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch Virol 143:1461–1476CrossRefPubMed
32.
go back to reference Sugimura T, Suzuki T, Chatchawanchonteera A, Sinuwonkwat P, Tsuda T, Murakami Y (2000) Application of latex beads agglutination test for the detection of the antibody against virus-infection-associated (VIA) antigen of foot-and-mouth disease (FMD) virus. J Vet Med Sci Jpn Soc Vet Sci 62:805–807CrossRef Sugimura T, Suzuki T, Chatchawanchonteera A, Sinuwonkwat P, Tsuda T, Murakami Y (2000) Application of latex beads agglutination test for the detection of the antibody against virus-infection-associated (VIA) antigen of foot-and-mouth disease (FMD) virus. J Vet Med Sci Jpn Soc Vet Sci 62:805–807CrossRef
33.
go back to reference Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R, Harris E, Pierson TC, Fremont DH, Diamond MS (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84:9227–9239PubMedCentralCrossRefPubMed Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R, Harris E, Pierson TC, Fremont DH, Diamond MS (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84:9227–9239PubMedCentralCrossRefPubMed
34.
go back to reference Sun T, Lu P, Wang X (2004) Localization of infection-related epitopes on the non-structural protein 3ABC of foot-and-mouth disease virus and the application of tandem epitopes. J Virol Methods 119:79–86CrossRefPubMed Sun T, Lu P, Wang X (2004) Localization of infection-related epitopes on the non-structural protein 3ABC of foot-and-mouth disease virus and the application of tandem epitopes. J Virol Methods 119:79–86CrossRefPubMed
35.
go back to reference Tribbick G (2002) Multipin peptide libraries for antibody and receptor epitope screening and characterization. J Immunol Methods 267:27–35CrossRefPubMed Tribbick G (2002) Multipin peptide libraries for antibody and receptor epitope screening and characterization. J Immunol Methods 267:27–35CrossRefPubMed
36.
go back to reference Uddowla S, Hollister J, Pacheco JM, Rodriguez LL, Rieder E (2012) A safe foot-and-mouth disease vaccine platform with two negative markers for differentiating infected from vaccinated animals. J Virol 86:11675–11685PubMedCentralCrossRefPubMed Uddowla S, Hollister J, Pacheco JM, Rodriguez LL, Rieder E (2012) A safe foot-and-mouth disease vaccine platform with two negative markers for differentiating infected from vaccinated animals. J Virol 86:11675–11685PubMedCentralCrossRefPubMed
37.
go back to reference Wang H, Zhao L, Li W, Zhou G, Yu L (2011) Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Vet Microbiol 148:189–199CrossRefPubMed Wang H, Zhao L, Li W, Zhou G, Yu L (2011) Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Vet Microbiol 148:189–199CrossRefPubMed
38.
go back to reference Wang LF, Du Plessis DH, White JR, Hyatt AD, Eaton BT (1995) Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J Immunol Methods 178:1–12CrossRefPubMed Wang LF, Du Plessis DH, White JR, Hyatt AD, Eaton BT (1995) Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J Immunol Methods 178:1–12CrossRefPubMed
39.
go back to reference Yang D, Zhang C, Zhao L, Zhou G, Wang H, Yu L (2011) Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 155:291–299CrossRefPubMed Yang D, Zhang C, Zhao L, Zhou G, Wang H, Yu L (2011) Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 155:291–299CrossRefPubMed
40.
go back to reference Yang M, Clavijo A, Li M, Hole K, Holland H, Wang H, Deng MY (2007) Identification of a major antibody binding epitope in the non-structural protein 3D of foot-and-mouth disease virus in cattle and the development of a monoclonal antibody with diagnostic applications. J Immunol Methods 321:174–181CrossRefPubMed Yang M, Clavijo A, Li M, Hole K, Holland H, Wang H, Deng MY (2007) Identification of a major antibody binding epitope in the non-structural protein 3D of foot-and-mouth disease virus in cattle and the development of a monoclonal antibody with diagnostic applications. J Immunol Methods 321:174–181CrossRefPubMed
41.
go back to reference Yu Y, Wang H, Zhao L, Zhang C, Jiang Z, Yu L (2011) Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. J Microbiol 49:94–101CrossRefPubMed Yu Y, Wang H, Zhao L, Zhang C, Jiang Z, Yu L (2011) Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. J Microbiol 49:94–101CrossRefPubMed
Metadata
Title
Identification of a conserved linear epitope using a monoclonal antibody against non-structural protein 3B of foot-and-mouth disease virus
Authors
Chaosi Li
Weifeng Liang
Wenming Liu
Decheng Yang
Haiwei Wang
Wenge Ma
Guohui Zhou
Li Yu
Publication date
01-02-2016
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 2/2016
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-015-2667-9

Other articles of this Issue 2/2016

Archives of Virology 2/2016 Go to the issue