Skip to main content
Top
Published in: Journal of Neural Transmission 4/2019

Open Access 01-04-2019 | Parkinson's Disease | Neurology and Preclinical Neurological Studies - Original Article

Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment

Authors: Dasiel O. Borroto-Escuela, Kjell Fuxe

Published in: Journal of Neural Transmission | Issue 4/2019

Login to get access

Abstract

The adenosine homo, iso and heteroreceptor complexes in the basal ganglia play a highly significant role in modulating the indirect and direct pathways and the striosomal projections to the nigro-striatal DA system. The major adenosine receptor complexes in the striato-pallidal GABA neurons can be the A2AR–D2R and A2AR–D2R–mGluR5 receptor complexes, in which A2AR protomers and mGluR5 protomers can allosterically interact to inhibit D2R protomer signaling. Through a reorganization of these heteroreceptor complexes upon chronic dopaminergic treatment a pathological and prolonged inhibition of D2R receptor protomer signaling can develop with motor inhibition and wearing off of the therapeutic effects of levodopa and dopamine receptor agonists. The direct pathway is enriched in D1R in and around glutamate synapses enhancing the ability of these GABA neurons to be activated and increase motor initiation. The brake on these GABA neurons is in this case exerted by A1R forming A1R–D1R heteroreceptor complexes in which they allosterically inhibit D1R signaling and thereby reduce motor initiation. Upon chronic levodopa treatment a reorganization of the D1R heteroreceptor complexes develops with the formation of putative A1R–D1R–D3 in addition to D1R–D3R complexes in which D3R enhances D1R protomer signaling and may make the A1R protomer brake less effective. Alpha-synuclein monomers–dimers are postulated to form complexes with A2AR homo and heteroprotomers in the plasma membrane enhancing alpha-synuclein aggregation and toxicity. The alpha-synuclein fibrils formed in the A2AR enriched dendritic spines of the striato-pallidal GABA neurons may reach the surrounding DA terminals via extracellular-vesicle-mediated volume transmission involving internalization of the vesicles and their cargo (alpha-synuclein fibrils) into the vulnerable DA terminals, enhancing their degeneration followed by retrograde flow of these fibrils in the DA axons to the vulnerable nigral DA nerve cells.
Literature
go back to reference Anden NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neoestriatal dopamine neurons. Life Sci 3:523–530CrossRef Anden NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neoestriatal dopamine neurons. Life Sci 3:523–530CrossRef
go back to reference Audet N, Galés C, Archer-Lahlou E, Vallières M, Schiller PW, Bouvier M, Pineyro G (2008) Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem 283:15078–15088CrossRefPubMedPubMedCentral Audet N, Galés C, Archer-Lahlou E, Vallières M, Schiller PW, Bouvier M, Pineyro G (2008) Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem 283:15078–15088CrossRefPubMedPubMedCentral
go back to reference Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 34:972–986. https://doi.org/10.1038/npp.2008.144 CrossRefPubMed Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 34:972–986. https://​doi.​org/​10.​1038/​npp.​2008.​144 CrossRefPubMed
go back to reference Bezard E (2003) Neuroprotection for Parkinson’s disease: a call for clinically driven experimental design. Lancet Neurol 2:393CrossRefPubMed Bezard E (2003) Neuroprotection for Parkinson’s disease: a call for clinically driven experimental design. Lancet Neurol 2:393CrossRefPubMed
go back to reference Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015a) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks Philosophical transactions of the Royal Society of London Series B. Biol Sci https://doi.org/10.1098/rstb.2014.0183 CrossRef Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015a) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks Philosophical transactions of the Royal Society of London Series B. Biol Sci https://​doi.​org/​10.​1098/​rstb.​2014.​0183 CrossRef
go back to reference Borroto-Escuela DO et al (2015b) On the role of the balance of GPCR Homo/heteroreceptor complexes in the brain. J Adv Neurosci Res 2:36–44CrossRef Borroto-Escuela DO et al (2015b) On the role of the balance of GPCR Homo/heteroreceptor complexes in the brain. J Adv Neurosci Res 2:36–44CrossRef
go back to reference Borroto-Escuela DO et al (2016) In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. In: Lujan R, Ciruela F (eds) Receptor and ion channel detection in the brain. Springer, Berlin, pp 109–126. https://doi.org/10.1515/revneuro-2015-0024 CrossRef Borroto-Escuela DO et al (2016) In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. In: Lujan R, Ciruela F (eds) Receptor and ion channel detection in the brain. Springer, Berlin, pp 109–126. https://​doi.​org/​10.​1515/​revneuro-2015-0024 CrossRef
go back to reference Calon F, Di Paolo T (2002) Levodopa response motor complications–GABA receptors and preproenkephalin expression in human brain. Parkinsonism Relat Disord 8:449–454CrossRefPubMed Calon F, Di Paolo T (2002) Levodopa response motor complications–GABA receptors and preproenkephalin expression in human brain. Parkinsonism Relat Disord 8:449–454CrossRefPubMed
go back to reference Canals M et al (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 88:726–734CrossRefPubMed Canals M et al (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 88:726–734CrossRefPubMed
go back to reference Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. SUPPL 232:231–255 Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. SUPPL 232:231–255
go back to reference Ferre S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 594:124–130CrossRefPubMed Ferre S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 594:124–130CrossRefPubMed
go back to reference Ferre S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76CrossRefPubMed Ferre S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76CrossRefPubMed
go back to reference Franco R et al (2014) Allosteric communication between Gi and Gs in the A1-A2A receptor tetrameric complex. Puriner Signal 10:738 Franco R et al (2014) Allosteric communication between Gi and Gs in the A1-A2A receptor tetrameric complex. Puriner Signal 10:738
go back to reference Fredholm BB, Altiok N (1994) Adenosine A2B receptor signalling is altered by stimulation of bradykinin or interleukin receptors in astroglioma cells. Neurochem Int 25:99–102CrossRefPubMed Fredholm BB, Altiok N (1994) Adenosine A2B receptor signalling is altered by stimulation of bradykinin or interleukin receptors in astroglioma cells. Neurochem Int 25:99–102CrossRefPubMed
go back to reference Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. Iv. Distribution of monoamine nerve terminals in the central nervous system acta physiologica scandinavica supplementum. SUPPL 247:237 Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. Iv. Distribution of monoamine nerve terminals in the central nervous system acta physiologica scandinavica supplementum. SUPPL 247:237
go back to reference Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 41:380–382. https://doi.org/10.1038/npp.2015.244 CrossRefPubMed Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 41:380–382. https://​doi.​org/​10.​1038/​npp.​2015.​244 CrossRefPubMed
go back to reference Fuxe K, Fredholm BB, Agnati LF, Corrodi H (1978) Dopamine receptors and ergot drugs. Evidence that an ergolene derivative is a differential agonist at subcortical limbic dopamine receptors. Brain Res 146:295–311CrossRefPubMed Fuxe K, Fredholm BB, Agnati LF, Corrodi H (1978) Dopamine receptors and ergot drugs. Evidence that an ergolene derivative is a differential agonist at subcortical limbic dopamine receptors. Brain Res 146:295–311CrossRefPubMed
go back to reference Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, Mutt V (1983) Evidence for the existence of receptor–receptor interactions in the central nervous system studies on the regulation of monoamine receptors by neuropeptides. J Neural Trans Suppl 18:165–179 Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, Mutt V (1983) Evidence for the existence of receptor–receptor interactions in the central nervous system studies on the regulation of monoamine receptors by neuropeptides. J Neural Trans Suppl 18:165–179
go back to reference Fuxe K et al (1992) Neuropeptides, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor–receptor interactions. Relevance for Parkinson’s disease and schizophrenia. Neurochemistry 20:215S–224S Fuxe K et al (1992) Neuropeptides, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor–receptor interactions. Relevance for Parkinson’s disease and schizophrenia. Neurochemistry 20:215S–224S
go back to reference Fuxe K, Ferre S, Snaprud P, von Euler G, Johansson B, Fredholm B (1993) Antagonistic A2A/D2 receptor interactions in the striatum as a basis for adenosine - dopamine interactions for the central nervous system. Drug Dev Res 28:374–380CrossRef Fuxe K, Ferre S, Snaprud P, von Euler G, Johansson B, Fredholm B (1993) Antagonistic A2A/D2 receptor interactions in the striatum as a basis for adenosine - dopamine interactions for the central nervous system. Drug Dev Res 28:374–380CrossRef
go back to reference Fuxe K, Ferre S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia Brain research. Brain Res Rev 26:258–273CrossRefPubMed Fuxe K, Ferre S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia Brain research. Brain Res Rev 26:258–273CrossRefPubMed
go back to reference Fuxe K et al (2001) Adenosine receptors and Parkinson’s disease relevance of antagonistic adenosine dopamine receptor interactions in the striatum. Adv Neurol 86:345–353PubMed Fuxe K et al (2001) Adenosine receptors and Parkinson’s disease relevance of antagonistic adenosine dopamine receptor interactions in the striatum. Adv Neurol 86:345–353PubMed
go back to reference Fuxe K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23CrossRefPubMed Fuxe K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23CrossRefPubMed
go back to reference Fuxe K, Agnati LF, Mora F (2008a) The basal ganglia-from neuronal systems to molecular networks preface. Brain Res Rev 58:247–248CrossRefPubMed Fuxe K, Agnati LF, Mora F (2008a) The basal ganglia-from neuronal systems to molecular networks preface. Brain Res Rev 58:247–248CrossRefPubMed
go back to reference Fuxe K, Borroto-Escuela D, Fisone G, Agnati LF, Tanganelli S (2014a) Understanding the role of heteroreceptor complexes in the central nervous system Current protein and peptide. Science 15:647 Fuxe K, Borroto-Escuela D, Fisone G, Agnati LF, Tanganelli S (2014a) Understanding the role of heteroreceptor complexes in the central nervous system Current protein and peptide. Science 15:647
go back to reference Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014c) Moonlighting proteins and protein–protein interactions as neurotherapeutic targets in the G protein-coupled receptor field Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 39:131–155. https://doi.org/10.1038/npp.2013.242 CrossRefPubMed Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014c) Moonlighting proteins and protein–protein interactions as neurotherapeutic targets in the G protein-coupled receptor field Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 39:131–155. https://​doi.​org/​10.​1038/​npp.​2013.​242 CrossRefPubMed
go back to reference Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726CrossRefPubMed Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726CrossRefPubMed
go back to reference Hinz S et al (2017) Adenosine A2B receptors block A2A receptor signaling. In: Meeting PC (ed) 7th Joint Italian-German Purine Club Meeting “Advances in basic and translational purinergic research”, vol 1. Sapienza University, Rome Hinz S et al (2017) Adenosine A2B receptors block A2A receptor signaling. In: Meeting PC (ed) 7th Joint Italian-German Purine Club Meeting “Advances in basic and translational purinergic research”, vol 1. Sapienza University, Rome
go back to reference Lee FJ, Liu F (2004) Direct interactions between NMDA and D1 receptors: a table of tails. Biochem Soc Trans 32:1032–1036CrossRefPubMed Lee FJ, Liu F (2004) Direct interactions between NMDA and D1 receptors: a table of tails. Biochem Soc Trans 32:1032–1036CrossRefPubMed
go back to reference Lee FJ et al (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111:219–230CrossRefPubMed Lee FJ et al (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111:219–230CrossRefPubMed
go back to reference Marshall FH, White J, Main M, Green A, Wise A (1999) GABA(B) receptors function as heterodimers. Biochem Soc Trans 27:530–535CrossRefPubMed Marshall FH, White J, Main M, Green A, Wise A (1999) GABA(B) receptors function as heterodimers. Biochem Soc Trans 27:530–535CrossRefPubMed
go back to reference Ogren SO (1985) Central serotonin neurones in avoidance learning: interactions with noradrenaline and dopamine neurones pharmacology. Biochem Behav 23:107–123CrossRef Ogren SO (1985) Central serotonin neurones in avoidance learning: interactions with noradrenaline and dopamine neurones pharmacology. Biochem Behav 23:107–123CrossRef
go back to reference Owen DM, Magenau A, Williamson DJ, Gaus K (2013) Super-resolution imaging by localization microscopy. Methods Mol Biol 950:81–93PubMed Owen DM, Magenau A, Williamson DJ, Gaus K (2013) Super-resolution imaging by localization microscopy. Methods Mol Biol 950:81–93PubMed
go back to reference Popoli P, Gimenez-Llort L, Pezzola A, Reggio R, Martinez E, Fuxe K, Ferre S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213CrossRefPubMed Popoli P, Gimenez-Llort L, Pezzola A, Reggio R, Martinez E, Fuxe K, Ferre S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213CrossRefPubMed
go back to reference Popoli P et al (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 25:505–513. https://doi.org/10.1016/S0893-133X(01)00256-1 CrossRefPubMed Popoli P et al (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors Neuropsychopharmacology: official publication of the American College. Neuropsychopharmacology 25:505–513. https://​doi.​org/​10.​1016/​S0893-133X(01)00256-1 CrossRefPubMed
go back to reference Rascol O et al (2001) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 58:249–254CrossRefPubMed Rascol O et al (2001) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 58:249–254CrossRefPubMed
go back to reference Rimondini R, Ferre S, Gimenez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 347:153–158CrossRefPubMed Rimondini R, Ferre S, Gimenez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 347:153–158CrossRefPubMed
go back to reference Rivera A, Cuellar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229CrossRefPubMed Rivera A, Cuellar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229CrossRefPubMed
go back to reference Sauer R, Maurinsh J, Reith U, Fulle F, Klotz KN, Muller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 43:440–448CrossRefPubMed Sauer R, Maurinsh J, Reith U, Fulle F, Klotz KN, Muller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 43:440–448CrossRefPubMed
go back to reference Stromberg I, Popoli P, Muller CE, Ferre S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 12:4033–4037CrossRefPubMed Stromberg I, Popoli P, Muller CE, Ferre S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 12:4033–4037CrossRefPubMed
Metadata
Title
Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment
Authors
Dasiel O. Borroto-Escuela
Kjell Fuxe
Publication date
01-04-2019
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 4/2019
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-019-01969-2

Other articles of this Issue 4/2019

Journal of Neural Transmission 4/2019 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Classical dopamine agonists

Neurology and Preclinical Neurological Studies - Review Article

Mesencephalic and extramesencephalic dopaminergic systems in Parkinson’s disease

Neurology and Preclinical Neurological Studies - Review Article

Dopaminergic modulation of striatal function and Parkinson’s disease

Neurology and Preclinical Neurological Studies - Review Article

Is Braak staging valid for all types of Parkinson’s disease?