Skip to main content
Top
Published in: Journal of Neural Transmission 5/2013

01-05-2013 | Neurology and Preclinical Neurological Studies - Original Article

Remodeling of the fovea in Parkinson disease

Authors: B. Spund, Y. Ding, T. Liu, I. Selesnick, S. Glazman, E. M. Shrier, I. Bodis-Wollner

Published in: Journal of Neural Transmission | Issue 5/2013

Login to get access

Abstract

To quantify the thickness of the inner retinal layers in the foveal pit where the nerve fiber layer (NFL) is absent, and quantify changes in the ganglion cells and inner plexiform layer. Pixel-by-pixel volumetric measurements were obtained via Spectral-Domain optical coherence tomography (SD-OCT) from 50 eyes of Parkinson disease (PD) (n = 30) and 50 eyes of healthy control subjects (n = 27). Receiver operating characteristics (ROC) were used to classify individual subjects with respect to sensitivity and specificity calculations at each perifoveolar distance. Three-dimensional topographic maps of the healthy and PD foveal pit were created. The foveal pit is thinner and broader in PD. The difference becomes evident in an annular zone between 0.5 and 2 mm from the foveola and the optimal (ROC-defined) zone is from 0.75 to 1.5 mm. This zone is nearly devoid of NFL and partially overlaps the foveal avascular zone. About 78 % of PD eyes can be discriminated from HC eyes based on this zone. ROC applied to OCT pixel-by-pixel analysis helps to discriminate PD from HC retinae. Remodeling of the foveal architecture is significant because it may provide a visible and quantifiable signature of PD. The specific location of remodeling in the fovea raises a novel concept for exploring the mechanism of oxidative stress on retinal neurons in PD. OCT is a promising quantitative tool in PD research. However, larger scale studies are needed before the method can be applied to clinical follow-ups.
Appendix
Available only for authorised users
Literature
go back to reference Aaker GD, Myung JS, Ehrlich JR et al (2008) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432 Aaker GD, Myung JS, Ehrlich JR et al (2008) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432
go back to reference Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Documenta Ophthal 1116:137–146CrossRef Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Documenta Ophthal 1116:137–146CrossRef
go back to reference Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132(Pt 5):1128–1145 Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132(Pt 5):1128–1145
go back to reference Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord. 17(6):431–436 (Epub 2011 Mar 31) Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord. 17(6):431–436 (Epub 2011 Mar 31)
go back to reference Bagci AM, Shahidi M, Ansari R et al (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687PubMedCrossRef Bagci AM, Shahidi M, Ansari R et al (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687PubMedCrossRef
go back to reference Biehlmaier O, Alam M, Schmidt WJ (2007) A rat model of Parkinsonism shows depletion of dopamine in the retina. NeurochemInt 50:189–195CrossRef Biehlmaier O, Alam M, Schmidt WJ (2007) A rat model of Parkinsonism shows depletion of dopamine in the retina. NeurochemInt 50:189–195CrossRef
go back to reference Bodis-Wollner I (1990) Visual deficit related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301PubMedCrossRef Bodis-Wollner I (1990) Visual deficit related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301PubMedCrossRef
go back to reference Bodis-Wollner I, Harnois C, Bobak P, Mylin LH (1983) On the possible role oftemporal delays of afferent processing in Parkinson’s disease. J Neural Trans Suppl 19:243–252 Bodis-Wollner I, Harnois C, Bobak P, Mylin LH (1983) On the possible role oftemporal delays of afferent processing in Parkinson’s disease. J Neural Trans Suppl 19:243–252
go back to reference Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5CrossRef Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5CrossRef
go back to reference Chui TY, Zhong Z, Song H, Burns SA (2012) Foveal avascular zone and its relationship to foveal pit shape. Optom Vis Sci 89(5):602–610PubMedCrossRef Chui TY, Zhong Z, Song H, Burns SA (2012) Foveal avascular zone and its relationship to foveal pit shape. Optom Vis Sci 89(5):602–610PubMedCrossRef
go back to reference Cubo E, Tedejo RP, Rodriguez Mendez V et al (2010) Retinal thickness in Parkinson’s disease and essential tremor. Mov Disord 25:2461–2462PubMedCrossRef Cubo E, Tedejo RP, Rodriguez Mendez V et al (2010) Retinal thickness in Parkinson’s disease and essential tremor. Mov Disord 25:2461–2462PubMedCrossRef
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef
go back to reference Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 37:3509–3529PubMedCrossRef Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 37:3509–3529PubMedCrossRef
go back to reference Dowling JE, Ehinger B (1978) Synaptic organization of the dopaminergic neurons in the rabbit retina. J Comp Neurol 180:203–220PubMedCrossRef Dowling JE, Ehinger B (1978) Synaptic organization of the dopaminergic neurons in the rabbit retina. J Comp Neurol 180:203–220PubMedCrossRef
go back to reference Dubis AM, Hansen BR, Cooper RF et al (2012) The relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53(3):1628PubMedCrossRef Dubis AM, Hansen BR, Cooper RF et al (2012) The relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53(3):1628PubMedCrossRef
go back to reference Engle RF (1983) Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In: Intriligator MD, Griliches Z (eds) Handbook of econometrics II, pp 796–801. Elsevier. ISBN978-0-444-86185-6 Engle RF (1983) Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In: Intriligator MD, Griliches Z (eds) Handbook of econometrics II, pp 796–801. Elsevier. ISBN978-0-444-86185-6
go back to reference Esteve-Rudd J, Campello L, Herrero MT et al (2010) Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Res 1352:70–82PubMedCrossRef Esteve-Rudd J, Campello L, Herrero MT et al (2010) Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Res 1352:70–82PubMedCrossRef
go back to reference Frederick JM, Rayborn ME, Laties AM et al (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210:65–79PubMedCrossRef Frederick JM, Rayborn ME, Laties AM et al (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210:65–79PubMedCrossRef
go back to reference Ghilardi MF, Chung E, Bodis-Wollner I et al (1988) Systemic 1-methyl, 4-phenyl 1–2-3-6 tetrahydropyridine (MPTP) administration decreases retinal dopamine concentration in primates. Life Sci 4(3):255–6263CrossRef Ghilardi MF, Chung E, Bodis-Wollner I et al (1988) Systemic 1-methyl, 4-phenyl 1–2-3-6 tetrahydropyridine (MPTP) administration decreases retinal dopamine concentration in primates. Life Sci 4(3):255–6263CrossRef
go back to reference Ghilardi MF, Marx MS, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364PubMedCrossRef Ghilardi MF, Marx MS, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364PubMedCrossRef
go back to reference Gottlob I, Weghaupt H, Vass C, Auff E (1989) Effect of levodopa on the human pattern electroretinogram and pattern visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 227:421–427PubMedCrossRef Gottlob I, Weghaupt H, Vass C, Auff E (1989) Effect of levodopa on the human pattern electroretinogram and pattern visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 227:421–427PubMedCrossRef
go back to reference Hajee M, March W, Wolintz A et al (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741PubMedCrossRef Hajee M, March W, Wolintz A et al (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741PubMedCrossRef
go back to reference Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMed Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMed
go back to reference Harnois C, DiPaolo T (1990) Decreased dopamine in the retinas of patients with Parkinson disease. Invest Ophthalmol Vis Sci 31:2473–2475PubMed Harnois C, DiPaolo T (1990) Decreased dopamine in the retinas of patients with Parkinson disease. Invest Ophthalmol Vis Sci 31:2473–2475PubMed
go back to reference Hendley ED, Snyder SH (1972) Stereoselectivity of catecholamine uptake in noradrenergic and dopaminergic peripheral organs. Eur J Pharmacol 19:56–66PubMedCrossRef Hendley ED, Snyder SH (1972) Stereoselectivity of catecholamine uptake in noradrenergic and dopaminergic peripheral organs. Eur J Pharmacol 19:56–66PubMedCrossRef
go back to reference Hokoc JN, Mariani AP (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7(9):2785–2793PubMed Hokoc JN, Mariani AP (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells. J Neurosci 7(9):2785–2793PubMed
go back to reference Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCrossRef Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCrossRef
go back to reference Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vis Res 34:2629–2638PubMedCrossRef Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vis Res 34:2629–2638PubMedCrossRef
go back to reference Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vis Res 44:2793–2797PubMedCrossRef Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vis Res 44:2793–2797PubMedCrossRef
go back to reference La Morgia C, Carbonelli M, Barboni P (2011) Age-related temporal loss of retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Invest Ophthalmol Vis Sci 52. E-Abstract 2984. Eur J Neurol. doi: 10.1111/j.1468-1331.2012.03701.x (Epub ahead of print) La Morgia C, Carbonelli M, Barboni P (2011) Age-related temporal loss of retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Invest Ophthalmol Vis Sci 52. E-Abstract 2984. Eur J Neurol. doi: 10.​1111/​j.​1468-1331.​2012.​03701.​x (Epub ahead of print)
go back to reference Loduca AL, Zhana CHI, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers with spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855PubMedCrossRef Loduca AL, Zhana CHI, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers with spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855PubMedCrossRef
go back to reference Mariani AP, Hokoc JN (1988) Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey retina. J Comp Neurol 276(1):81–91PubMedCrossRef Mariani AP, Hokoc JN (1988) Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey retina. J Comp Neurol 276(1):81–91PubMedCrossRef
go back to reference Martínez-Navarrete GC, Martín-Nieto J, Esteve-Rudd J et al (2007) Alpha synuclein gene expression profile in the retina of vertebrates. Mol Vis 13(949–61):32 Martínez-Navarrete GC, Martín-Nieto J, Esteve-Rudd J et al (2007) Alpha synuclein gene expression profile in the retina of vertebrates. Mol Vis 13(949–61):32
go back to reference Moschos MM et al (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21:24–29PubMedCrossRef Moschos MM et al (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21:24–29PubMedCrossRef
go back to reference Nguyen-Legros J (1998) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10:137–144CrossRef Nguyen-Legros J (1998) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10:137–144CrossRef
go back to reference Peppe A, Stanzione P, Pierantozzi M et al (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depends on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382PubMedCrossRef Peppe A, Stanzione P, Pierantozzi M et al (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depends on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382PubMedCrossRef
go back to reference Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126:507–511PubMedCrossRef Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126:507–511PubMedCrossRef
go back to reference Sartucci F, Orlandi G, Bonuccelli U, Borghetti D, Murri L, Orsini C et al (2006) Chromaticpattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophycompared with Parkinson's disease. Neurol Sci 26(6):395–401 Sartucci F, Orlandi G, Bonuccelli U, Borghetti D, Murri L, Orsini C et al (2006) Chromaticpattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophycompared with Parkinson's disease. Neurol Sci 26(6):395–401
go back to reference Stanzione P, Fattapposta F, Tagliati M, D’Alessio C, Marciani MG, Foti A et al (1990) Dopaminergic pharmacological manipulations in normal humans confirm the specificity of the visual (PERG-VEP) and cognitive (P300) electrophysiological alterations in Parkinson’s disease. Electroencephalogr Clin Neurophysiol Suppl 41:216–220 Stanzione P, Fattapposta F, Tagliati M, D’Alessio C, Marciani MG, Foti A et al (1990) Dopaminergic pharmacological manipulations in normal humans confirm the specificity of the visual (PERG-VEP) and cognitive (P300) electrophysiological alterations in Parkinson’s disease. Electroencephalogr Clin Neurophysiol Suppl 41:216–220
go back to reference Tagliati M, Bodis-Wollner I, Kovanecz I, and Stanzione P (1994) Spatial frequency tuning of the monkey pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057 Tagliati M, Bodis-Wollner I, Kovanecz I, and Stanzione P (1994) Spatial frequency tuning of the monkey pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057
go back to reference Tagliati M, Bodis-Wollner I, Yahr M (1995) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electoenceph Clin Neurophysiol 100:1–11CrossRef Tagliati M, Bodis-Wollner I, Yahr M (1995) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electoenceph Clin Neurophysiol 100:1–11CrossRef
go back to reference Tan JM, Wong ES, Lim KL (2009) Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 11:2119–2134PubMedCrossRef Tan JM, Wong ES, Lim KL (2009) Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 11:2119–2134PubMedCrossRef
go back to reference Tick S, Rossant F, Ghorbel I et al (2011) Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 52:5105–5110PubMedCrossRef Tick S, Rossant F, Ghorbel I et al (2011) Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 52:5105–5110PubMedCrossRef
go back to reference Wagner-Schuman M et al (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634PubMedCrossRef Wagner-Schuman M et al (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634PubMedCrossRef
go back to reference Witkovsky P, Gabriel R, Krizaj D (2008) Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol 510:158–174PubMedCrossRef Witkovsky P, Gabriel R, Krizaj D (2008) Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol 510:158–174PubMedCrossRef
go back to reference Wojtkowski M, Bajraszewski T, Gorczynska I et al (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138:412–419PubMedCrossRef Wojtkowski M, Bajraszewski T, Gorczynska I et al (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138:412–419PubMedCrossRef
Metadata
Title
Remodeling of the fovea in Parkinson disease
Authors
B. Spund
Y. Ding
T. Liu
I. Selesnick
S. Glazman
E. M. Shrier
I. Bodis-Wollner
Publication date
01-05-2013
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 5/2013
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-012-0909-5

Other articles of this Issue 5/2013

Journal of Neural Transmission 5/2013 Go to the issue