Skip to main content
Top
Published in: Journal of Neural Transmission 9/2009

01-09-2009 | Movement Disorders - Original Article

Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease

Authors: Silvie Sedláčková, Irena Rektorová, Hana Srovnalová, Ivan Rektor

Published in: Journal of Neural Transmission | Issue 9/2009

Login to get access

Abstract

The aim of the present study was to investigate the effects of one session of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left dorsal premotor cortex (PMd) and left dorsolateral prefrontal cortex (DLPFC) on choice reaction time in a noise-compatibility task, and cognitive functions in patients with Parkinson’s disease (PD). Clinical motor symptoms of PD were assessed as well. Ten patients with PD entered a randomized, placebo-controlled study with a crossover design. Each patient received 10 Hz stimulation over the left PMd and DLPFC (active stimulation sites) and the occipital cortex (OCC; a control stimulation site) in the OFF motor state, i.e. at least after 12 h of dopaminergic drugs withdrawal. Frameless stereotaxy was used to target the optimal position of the coil. For the evaluation of reaction time, we used a noise-compatibility paradigm. A short battery of neuropsychological tests was performed to evaluate executive functions, working memory, and psychomotor speed. Clinical assessment included a clinical motor evaluation using part III of the Unified Parkinson’s Disease Rating Scale. Statistical analysis revealed no significant effect of rTMS applied over the left PMd and/or DLPFC in patients with PD in any of the measured parameters. In this study, we did not observe any effect of one session of high frequency rTMS applied over the left PMd and/or DLPFC on choice reaction time in a noise-compatibility task, cognitive functions, or motor features in patients with PD. rTMS applied over all three stimulated areas was well tolerated and safe in terms of the cognitive and motor effects.
Literature
go back to reference Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (are 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMedCrossRef Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (are 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMedCrossRef
go back to reference Barrett J, Della-Maggiore V, Chouinard PA, Paus T (2004) Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioural and brain imaging studies. Neuropsychopharmacology 29:1172–1189PubMedCrossRef Barrett J, Della-Maggiore V, Chouinard PA, Paus T (2004) Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioural and brain imaging studies. Neuropsychopharmacology 29:1172–1189PubMedCrossRef
go back to reference Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMedCrossRef Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMedCrossRef
go back to reference Bäumer T, Hidding U, Hamel W, Buhmann C, Moll CK, Gerloff C, Orth M, Siebner HR, Münchau A (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov Disord 24(5):672–676 Bäumer T, Hidding U, Hamel W, Buhmann C, Moll CK, Gerloff C, Orth M, Siebner HR, Münchau A (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov Disord 24(5):672–676
go back to reference Bermpohl F, Fregni F, Boggio PS, Thut G, Northoff G, Otachi PT, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. Neuroreport 16:615–619PubMedCrossRef Bermpohl F, Fregni F, Boggio PS, Thut G, Northoff G, Otachi PT, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. Neuroreport 16:615–619PubMedCrossRef
go back to reference Boggio PS, Fregni F, Bermpohl F, Mansur CG, Rosa M, Rumi DO, Barbosa ER, Odebrecht Rosa M, Pascual-Leone A, Rigonatti SP, Marcolin MA, Araujo Silva MT (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184PubMedCrossRef Boggio PS, Fregni F, Bermpohl F, Mansur CG, Rosa M, Rumi DO, Barbosa ER, Odebrecht Rosa M, Pascual-Leone A, Rigonatti SP, Marcolin MA, Araujo Silva MT (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184PubMedCrossRef
go back to reference Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111:323–345PubMedCrossRef Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111:323–345PubMedCrossRef
go back to reference Buhmann C, Gorsler A, Bäumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner HR, Münchau A (2004) Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 127:2732–2746PubMedCrossRef Buhmann C, Gorsler A, Bäumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner HR, Münchau A (2004) Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 127:2732–2746PubMedCrossRef
go back to reference Cappa SF, Sandrini M, Rossinin PM, Sosta K, Minuissi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723PubMed Cappa SF, Sandrini M, Rossinin PM, Sosta K, Minuissi C (2002) The role of the left frontal lobe in action naming: rTMS evidence. Neurology 59:720–723PubMed
go back to reference Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRef Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRef
go back to reference Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J Int Neuropsychol Soc 9:419–428PubMedCrossRef Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J Int Neuropsychol Soc 9:419–428PubMedCrossRef
go back to reference Cropley VL, Fujita M, Innis RB, Nathan PJ (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907PubMedCrossRef Cropley VL, Fujita M, Innis RB, Nathan PJ (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907PubMedCrossRef
go back to reference del Olmo MF, Bello O, Cudeiro J (2007) Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 118:131–139PubMedCrossRef del Olmo MF, Bello O, Cudeiro J (2007) Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 118:131–139PubMedCrossRef
go back to reference Dubois B, Anrade K, Levy R (2008) Executive dysfunction and neurocognitive testing. In: Duyckaerts C, Litvan I (eds) Dementias: handbook of clinical neurology (Series Editors: Aminoff MJ, Boller F, Swaab DF). Elsevier, Amsterdam, pp 35–52 Dubois B, Anrade K, Levy R (2008) Executive dysfunction and neurocognitive testing. In: Duyckaerts C, Litvan I (eds) Dementias: handbook of clinical neurology (Series Editors: Aminoff MJ, Boller F, Swaab DF). Elsevier, Amsterdam, pp 35–52
go back to reference Eimer M, Hommel B, Prinz W (1995) S-R compatibility and response selection. Acta Psychol 90:301–313CrossRef Eimer M, Hommel B, Prinz W (1995) S-R compatibility and response selection. Acta Psychol 90:301–313CrossRef
go back to reference Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord 24(3):357–363PubMedCrossRef Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord 24(3):357–363PubMedCrossRef
go back to reference Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, Athar S, Green J, McDonald W, DeLong MR (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118:2189–2194PubMedCrossRef Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, Athar S, Green J, McDonald W, DeLong MR (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118:2189–2194PubMedCrossRef
go back to reference Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 17:2915–2918CrossRef Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 17:2915–2918CrossRef
go back to reference Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMed Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMed
go back to reference Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurosurg Psychiatry 75:71–1174CrossRef Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurosurg Psychiatry 75:71–1174CrossRef
go back to reference Frith D, Friston KJ, Liddle P, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologie 29:1137–1148CrossRef Frith D, Friston KJ, Liddle P, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologie 29:1137–1148CrossRef
go back to reference Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, Berman KF (2004) Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 42:1781–1787PubMedCrossRef Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, Berman KF (2004) Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 42:1781–1787PubMedCrossRef
go back to reference Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752PubMedCrossRef Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752PubMedCrossRef
go back to reference Gotham AM, Brown RG, Marsden CD (1988) Frontal cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 2:299–321CrossRef Gotham AM, Brown RG, Marsden CD (1988) Frontal cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 2:299–321CrossRef
go back to reference Halsband U, Passingham RE (1985) Premotor cortex and the conditions for movement in monkey (Macaca fascicularis). Behav Brain Res 18:269–277PubMedCrossRef Halsband U, Passingham RE (1985) Premotor cortex and the conditions for movement in monkey (Macaca fascicularis). Behav Brain Res 18:269–277PubMedCrossRef
go back to reference Halstead WC (1947) Brain and intelligence: a quantitative study of the frontal lobes. University of Chicago Press, Chicago Halstead WC (1947) Brain and intelligence: a quantitative study of the frontal lobes. University of Chicago Press, Chicago
go back to reference Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84PubMedCrossRef Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84PubMedCrossRef
go back to reference Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Yutaka, Oda M, Ohta K, Yamada Y, Tamura Mamoru (2000) Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res 9:339–342PubMedCrossRef Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Yutaka, Oda M, Ohta K, Yamada Y, Tamura Mamoru (2000) Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res 9:339–342PubMedCrossRef
go back to reference Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121:2135–2143PubMedCrossRef Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121:2135–2143PubMedCrossRef
go back to reference Jahanshahi M (2005) Other cognitive functions. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 281–302 Jahanshahi M (2005) Other cognitive functions. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 281–302
go back to reference Jahanshahi M, Dirnberger G, Fulle R, Firth CD (1997) The functional anatomy of random number generation studied with PET. J Cereb Blood Flow Metab 17(1):S643 Jahanshahi M, Dirnberger G, Fulle R, Firth CD (1997) The functional anatomy of random number generation studied with PET. J Cereb Blood Flow Metab 17(1):S643
go back to reference Jahanshahi M, Profice P, Brown RG, Mike C, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544PubMedCrossRef Jahanshahi M, Profice P, Brown RG, Mike C, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544PubMedCrossRef
go back to reference Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2:1 Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2:1
go back to reference Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRef Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRef
go back to reference Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, Kessler J, Sturm V, Heiss WD, Hilker R (2009) Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 72:42–49PubMedCrossRef Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, Kessler J, Sturm V, Heiss WD, Hilker R (2009) Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 72:42–49PubMedCrossRef
go back to reference Kulisevsky J, Avila A, Barbano M, Antonijoan R, Berthier M, Gironelli A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132 PubMedCrossRef Kulisevsky J, Avila A, Barbano M, Antonijoan R, Berthier M, Gironelli A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132 PubMedCrossRef
go back to reference Liu X, Banich MT, Jacobson BL, Tanabe JL (2006) Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16:827–834PubMedCrossRef Liu X, Banich MT, Jacobson BL, Tanabe JL (2006) Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16:827–834PubMedCrossRef
go back to reference Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 12:325–331CrossRef Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 12:325–331CrossRef
go back to reference Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140PubMedCrossRef Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140PubMedCrossRef
go back to reference Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430PubMedCrossRef Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430PubMedCrossRef
go back to reference Marois R, Larson JM, Chun MM, Shima D (2006) Response-specific sources of dual-task interference in human pre-motor cortex. Psychol Res 70:436–447PubMedCrossRef Marois R, Larson JM, Chun MM, Shima D (2006) Response-specific sources of dual-task interference in human pre-motor cortex. Psychol Res 70:436–447PubMedCrossRef
go back to reference Milham MP, Banich MT (2005) Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Hum Brain Mapp 25:328–335PubMedCrossRef Milham MP, Banich MT (2005) Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Hum Brain Mapp 25:328–335PubMedCrossRef
go back to reference Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the Stroop task. Brain Res Cogn Brain Res 17:212–222PubMedCrossRef Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the Stroop task. Brain Res Cogn Brain Res 17:212–222PubMedCrossRef
go back to reference Montgomery SA, Asberg MA (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389PubMedCrossRef Montgomery SA, Asberg MA (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389PubMedCrossRef
go back to reference Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin BS, Robinson RG (2002) Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58:1288–1290PubMed Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin BS, Robinson RG (2002) Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58:1288–1290PubMed
go back to reference Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17PubMedCrossRef Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17PubMedCrossRef
go back to reference Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls-Solé J, Brasil-Neto JP, Wassermann EM, Cohen LG et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130PubMedCrossRef Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls-Solé J, Brasil-Neto JP, Wassermann EM, Cohen LG et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130PubMedCrossRef
go back to reference Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M (1994) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898PubMed Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M (1994) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898PubMed
go back to reference Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217PubMedCrossRef Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217PubMedCrossRef
go back to reference Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362(6418):342–345PubMedCrossRef Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362(6418):342–345PubMedCrossRef
go back to reference Paus T (1998) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224CrossRef Paus T (1998) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224CrossRef
go back to reference Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method of studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMed Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method of studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMed
go back to reference Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036PubMedCrossRef Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036PubMedCrossRef
go back to reference Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory task. Proc Natl Acad Sci USA 90:878–882PubMedCrossRef Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory task. Proc Natl Acad Sci USA 90:878–882PubMedCrossRef
go back to reference Praamstra P, Stegman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Brain 121:167–177PubMedCrossRef Praamstra P, Stegman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Brain 121:167–177PubMedCrossRef
go back to reference Praamstra P, Kleine B, Schnitzler A (1999) Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. Neuroreport 10:3671–3674PubMedCrossRef Praamstra P, Kleine B, Schnitzler A (1999) Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. Neuroreport 10:3671–3674PubMedCrossRef
go back to reference Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161PubMedCrossRef Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161PubMedCrossRef
go back to reference Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I (2007) Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Mov Disord 22:1518–1519PubMedCrossRef Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I (2007) Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Mov Disord 22:1518–1519PubMedCrossRef
go back to reference Ridderinkhof KR (2002) Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford Ridderinkhof KR (2002) Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford
go back to reference Rushworth MF, Johansen-Berg H, Gobel SM, Delvin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:89–100CrossRef Rushworth MF, Johansen-Berg H, Gobel SM, Delvin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:89–100CrossRef
go back to reference Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE et al (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study Brain 120:963–976 Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE et al (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study Brain 120:963–976
go back to reference Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movement: a study using transcranial magnetic stimulation. Brain 121:785–799PubMedCrossRef Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movement: a study using transcranial magnetic stimulation. Brain 121:785–799PubMedCrossRef
go back to reference Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMed Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMed
go back to reference Siebner HR (2005) Treatment of Movement Disorders. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia Siebner HR (2005) Treatment of Movement Disorders. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia
go back to reference Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef
go back to reference Siebner HR, Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178:91–94PubMedCrossRef Siebner HR, Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178:91–94PubMedCrossRef
go back to reference Siebner HR, Loeer C, Mentschel C, Weindl D, Conrad B (2002) Repetitive transcranial magnetic stimulation in Parkinson’s disease and focal dystonia. Clin Neurophysiol Suppl 54:399–409CrossRef Siebner HR, Loeer C, Mentschel C, Weindl D, Conrad B (2002) Repetitive transcranial magnetic stimulation in Parkinson’s disease and focal dystonia. Clin Neurophysiol Suppl 54:399–409CrossRef
go back to reference Silberman CD, Laks J, Capitão CF, Rodrigues CS, Moreira I, Engelhardt E (2006) Recognizing depression in patients with Parkinson’s disease: accuracy and specificity of two depression rating scale. Arq Neuropsiquiatr 64:407–411PubMed Silberman CD, Laks J, Capitão CF, Rodrigues CS, Moreira I, Engelhardt E (2006) Recognizing depression in patients with Parkinson’s disease: accuracy and specificity of two depression rating scale. Arq Neuropsiquiatr 64:407–411PubMed
go back to reference Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95:876–882PubMedCrossRef Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95:876–882PubMedCrossRef
go back to reference Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269PubMedCrossRef Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269PubMedCrossRef
go back to reference Speer AM, Repella JD, Figueras S, Demian NK, Kimbrell TA, Wasserman EM, Post RM (2001) Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17:259–263PubMedCrossRef Speer AM, Repella JD, Figueras S, Demian NK, Kimbrell TA, Wasserman EM, Post RM (2001) Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17:259–263PubMedCrossRef
go back to reference Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:1–4 Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:1–4
go back to reference Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370PubMedCrossRef Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370PubMedCrossRef
go back to reference Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S, Ugawa Y (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573PubMedCrossRef Terao Y, Furubayashi T, Okabe S, Mochizuki H, Arai N, Kobayashi S, Ugawa Y (2007) Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation. J Cogn Neurosci 19:1556–1573PubMedCrossRef
go back to reference Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRef Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRef
go back to reference Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45:1440–1446PubMedCrossRef Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK (1999) Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry 45:1440–1446PubMedCrossRef
go back to reference Wechsler D (1975) Wechsler memory scale. Psychological Corporation, New York Wechsler D (1975) Wechsler memory scale. Psychological Corporation, New York
go back to reference Wessel K, Zeffiro T, Toro C, Hallett M (1997) Self-paced versus metronome-paced finger movements. A positron emission tomography study. J Neuroimaging 7:145–151PubMed Wessel K, Zeffiro T, Toro C, Hallett M (1997) Self-paced versus metronome-paced finger movements. A positron emission tomography study. J Neuroimaging 7:145–151PubMed
Metadata
Title
Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease
Authors
Silvie Sedláčková
Irena Rektorová
Hana Srovnalová
Ivan Rektor
Publication date
01-09-2009
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 9/2009
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-009-0259-0

Other articles of this Issue 9/2009

Journal of Neural Transmission 9/2009 Go to the issue

Basic Neurosciences, Genetics and Immunology - Original Article

sPhospholipase A2 is inhibited by anthocyanidins

Basic Neurosciences, Genetics and Immunology - Original Article

Neuroprotective effects of probenecid in a transgenic animal model of Huntington’s disease