Skip to main content
Top
Published in: Journal of Neural Transmission 9/2009

01-09-2009 | Basic Neurosciences, Genetics and Immunology - Original Article

Neuroprotective effects of probenecid in a transgenic animal model of Huntington’s disease

Authors: Eniko Vamos, Krisztina Voros, Denes Zadori, Laszlo Vecsei, Peter Klivenyi

Published in: Journal of Neural Transmission | Issue 9/2009

Login to get access

Abstract

Huntington’s disease (HD) is an autosomal dominantly inherited disorder, caused by an expanded polyglutamine region of a protein called huntingtin. The excitotoxicity, oxidative damage and altered membrane transport may have an important role in the pathogenesis of HD. Probenecid is a non-selective inhibitor of multidrug resistance-associated proteins, but it also inhibits organic anion transporters. In this study, we examined the effects of probenecid on the survival, behaviour and immunohistochemical changes in the N171-82Q transgenic mouse model of HD. After probenecid administration, the duration of survival improved by 35%. The motor activity was significantly ameliorated as compared with the control transgenic group. Probenecid treatment significantly reduced the neuronal loss and the number of neuronal intranuclear aggregates. These results suggest that probenecid may exert a neuroprotective effect by increasing the membrane transport of protective compounds, and/or inhibiting the toxic compounds.
Literature
go back to reference Adam OR, Jankovic J (2008) Symptomatic treatment of Huntington disease. Neurotherapeutics 5:181–197PubMedCrossRef Adam OR, Jankovic J (2008) Symptomatic treatment of Huntington disease. Neurotherapeutics 5:181–197PubMedCrossRef
go back to reference Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339PubMedCrossRef Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339PubMedCrossRef
go back to reference Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, Bird ED (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108:80–87PubMedCrossRef Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, Bird ED (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108:80–87PubMedCrossRef
go back to reference Choi DW (1988) Alzheimer’s disease and dementia. Med Sect Proc 12:9–155 Choi DW (1988) Alzheimer’s disease and dementia. Med Sect Proc 12:9–155
go back to reference Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654PubMedCrossRef Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654PubMedCrossRef
go back to reference Connick JH, Carla V, Moroni F, Stone TW (1989) Increase in kynurenic acid in Huntington’s disease motor cortex. J Neurochem 52:985–987PubMedCrossRef Connick JH, Carla V, Moroni F, Stone TW (1989) Increase in kynurenic acid in Huntington’s disease motor cortex. J Neurochem 52:985–987PubMedCrossRef
go back to reference DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993PubMedCrossRef DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993PubMedCrossRef
go back to reference Gardian G, Vecsei L (2004) Huntington’s disease: pathomechanism and therapeutic perspectives. J Neural Transm 111:1485–1494PubMedCrossRef Gardian G, Vecsei L (2004) Huntington’s disease: pathomechanism and therapeutic perspectives. J Neural Transm 111:1485–1494PubMedCrossRef
go back to reference Gerk PM, Vore M (2002) Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 302:407–415PubMedCrossRef Gerk PM, Vore M (2002) Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 302:407–415PubMedCrossRef
go back to reference Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMed Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMed
go back to reference Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMed Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMed
go back to reference Juranka PF, Zastawny RL, Ling V (1989) P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J 3:2583–2592PubMed Juranka PF, Zastawny RL, Ling V (1989) P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J 3:2583–2592PubMed
go back to reference Lazarowski A, Caltana L, Merelli A, Rubio MD, Ramos AJ, Brusco A (2007) Neuronal mdr-1 gene expression after experimental focal hypoxia: a new obstacle for neuroprotection? J Neurol Sci 258:84–92PubMedCrossRef Lazarowski A, Caltana L, Merelli A, Rubio MD, Ramos AJ, Brusco A (2007) Neuronal mdr-1 gene expression after experimental focal hypoxia: a new obstacle for neuroprotection? J Neurol Sci 258:84–92PubMedCrossRef
go back to reference Lee G, Bendayan R (2004) Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 21:1313–1330PubMedCrossRef Lee G, Bendayan R (2004) Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 21:1313–1330PubMedCrossRef
go back to reference Lin ZP, Zhu YL, Johnson DR, Rice KP, Nottoli T, Hains BC, McGrath J, Waxman SG, Sartorelli AC (2008) Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 73:243–251PubMedCrossRef Lin ZP, Zhu YL, Johnson DR, Rice KP, Nottoli T, Hains BC, McGrath J, Waxman SG, Sartorelli AC (2008) Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 73:243–251PubMedCrossRef
go back to reference Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506PubMedCrossRef Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506PubMedCrossRef
go back to reference Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78:967–975PubMedCrossRef Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78:967–975PubMedCrossRef
go back to reference Moroni F, Russi P, Lombardi G, Beni M, Carla V (1988) Presence of kynurenic acid in the mammalian brain. J Neurochem 51:177–180PubMedCrossRef Moroni F, Russi P, Lombardi G, Beni M, Carla V (1988) Presence of kynurenic acid in the mammalian brain. J Neurochem 51:177–180PubMedCrossRef
go back to reference Perez-De La Cruz V, Santamaria A (2007) Integrative hypothesis for Huntington’s disease: a brief review of experimental evidence. Physiol Res 56:513–526PubMed Perez-De La Cruz V, Santamaria A (2007) Integrative hypothesis for Huntington’s disease: a brief review of experimental evidence. Physiol Res 56:513–526PubMed
go back to reference Potschka H, Fedrowitz M, Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131PubMedCrossRef Potschka H, Fedrowitz M, Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131PubMedCrossRef
go back to reference Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112PubMedCrossRef Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112PubMedCrossRef
go back to reference Rapposelli S, Digiacomo M, Balsamo A (2009) P-gp transporter and its role in neurodegenerative diseases. Curr Top Med Chem 9:209–217PubMedCrossRef Rapposelli S, Digiacomo M, Balsamo A (2009) P-gp transporter and its role in neurodegenerative diseases. Curr Top Med Chem 9:209–217PubMedCrossRef
go back to reference Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, Borst P (2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA 100:9244–9249 Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, Borst P (2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA 100:9244–9249
go back to reference Reynolds GP, Pearson SJ (1992) Neurochemical abnormalities in Huntington’s disease: neurotoxic mechanisms and neurotransmitter changes. J Neurol Sci 113:230–233PubMedCrossRef Reynolds GP, Pearson SJ (1992) Neurochemical abnormalities in Huntington’s disease: neurotoxic mechanisms and neurotransmitter changes. J Neurol Sci 113:230–233PubMedCrossRef
go back to reference Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRef Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRef
go back to reference Santamaria A, Rios C, Solis-Hernandez F, Ordaz-Moreno J, Gonzalez-Reynoso L, Altagracia M, Kravzov J (1996) Systemic dl-kynurenine and probenecid pretreatment attenuates quinolinic acid-induced neurotoxicity in rats. Neuropharmacology 35:23–28PubMedCrossRef Santamaria A, Rios C, Solis-Hernandez F, Ordaz-Moreno J, Gonzalez-Reynoso L, Altagracia M, Kravzov J (1996) Systemic dl-kynurenine and probenecid pretreatment attenuates quinolinic acid-induced neurotoxicity in rats. Neuropharmacology 35:23–28PubMedCrossRef
go back to reference Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington’s disease. Exp Neurol 197:31–40PubMedCrossRef Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington’s disease. Exp Neurol 197:31–40PubMedCrossRef
go back to reference Scheffer GL, Scheper RJ (2002) Drug resistance molecules: lessons from oncology. Novartis Found Symp 243:19–31PubMedCrossRef Scheffer GL, Scheper RJ (2002) Drug resistance molecules: lessons from oncology. Novartis Found Symp 243:19–31PubMedCrossRef
go back to reference Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407PubMedCrossRef Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407PubMedCrossRef
go back to reference Schwarcz R, Tamminga CA, Kurlan R, Shoulson I (1988) Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann Neurol 24:580–582PubMedCrossRef Schwarcz R, Tamminga CA, Kurlan R, Shoulson I (1988) Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann Neurol 24:580–582PubMedCrossRef
go back to reference Silverman WR, De Rivero VJP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem. doi:10.1074/jbc.M109.004804 PubMed Silverman WR, De Rivero VJP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem. doi:10.​1074/​jbc.​M109.​004804 PubMed
go back to reference Smith DL, Portier R, Woodman B, Hockly E, Mahal A, Klunk WE, Li XJ, Wanker E, Murray KD, Bates GP (2001) Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose-response profiles. Neurobiol Dis 8:1017–1026PubMedCrossRef Smith DL, Portier R, Woodman B, Hockly E, Mahal A, Klunk WE, Li XJ, Wanker E, Murray KD, Bates GP (2001) Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose-response profiles. Neurobiol Dis 8:1017–1026PubMedCrossRef
go back to reference Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMed Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMed
go back to reference Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154PubMedCrossRef Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154PubMedCrossRef
go back to reference The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef
go back to reference Urenjak J, Obrenovitch TP, Zilkha E (1997) Effect of probenecid on depolarizations evoked by N-methyl-d-aspartate (NMDA) in the rat striatum. Naunyn Schmiedebergs Arch Pharmacol 355:36–42PubMedCrossRef Urenjak J, Obrenovitch TP, Zilkha E (1997) Effect of probenecid on depolarizations evoked by N-methyl-d-aspartate (NMDA) in the rat striatum. Naunyn Schmiedebergs Arch Pharmacol 355:36–42PubMedCrossRef
go back to reference Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028PubMedCrossRef Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028PubMedCrossRef
Metadata
Title
Neuroprotective effects of probenecid in a transgenic animal model of Huntington’s disease
Authors
Eniko Vamos
Krisztina Voros
Denes Zadori
Laszlo Vecsei
Peter Klivenyi
Publication date
01-09-2009
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 9/2009
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-009-0253-6

Other articles of this Issue 9/2009

Journal of Neural Transmission 9/2009 Go to the issue

Basic Neurosciences, Genetics and Immunology - Short Communication

Role of the metabotropic glutamate receptor subtype 1 in the Harmaline-induced tremor in rats